Yield Evaluation of Citrus Fruits based on the YoloV5 compressed by
Knowledge Distillation
- URL: http://arxiv.org/abs/2211.08743v1
- Date: Wed, 16 Nov 2022 08:09:38 GMT
- Title: Yield Evaluation of Citrus Fruits based on the YoloV5 compressed by
Knowledge Distillation
- Authors: Yuqi Li, Yuting He, Yihang Zhou, Zirui Gong and Renjie Huang
- Abstract summary: In the field of planting fruit trees, pre-harvest estimation of fruit yield is important for fruit storage and price evaluation.
In this paper, a fruit counting and yield assessment method based on computer vision is proposed for citrus fruit trees.
Experiments show that the proposed method can accurately count fruits and approximate the yield.
- Score: 5.585209836203215
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the field of planting fruit trees, pre-harvest estimation of fruit yield
is important for fruit storage and price evaluation. However, considering the
cost, the yield of each tree cannot be assessed by directly picking the
immature fruit. Therefore, the problem is a very difficult task. In this paper,
a fruit counting and yield assessment method based on computer vision is
proposed for citrus fruit trees as an example. Firstly, images of single fruit
trees from different angles are acquired and the number of fruits is detected
using a deep Convolutional Neural Network model YOLOv5, and the model is
compressed using a knowledge distillation method. Then, a linear regression
method is used to model yield-related features and evaluate yield. Experiments
show that the proposed method can accurately count fruits and approximate the
yield.
Related papers
- A pipeline for multiple orange detection and tracking with 3-D fruit
relocalization and neural-net based yield regression in commercial citrus
orchards [0.0]
We propose a non-invasive alternative that utilizes fruit counting from videos, implemented as a pipeline.
To handle occluded and re-appeared fruit, we introduce a relocalization component that employs 3-D estimation of fruit locations.
By ensuring that at least 30% of the fruit is accurately detected, tracked, and counted, our yield regressor achieves an impressive coefficient of determination of 0.85.
arXiv Detail & Related papers (2023-12-27T21:22:43Z) - Vision-Based Cranberry Crop Ripening Assessment [1.8434042562191815]
This work is the first of its kind in quantitative evaluation of ripening using computer vision methods.
It has impact beyond cranberry crops including wine grapes, olives, blueberries, and maize.
arXiv Detail & Related papers (2023-08-31T14:58:11Z) - Fruit Ripeness Classification: a Survey [59.11160990637616]
Many automatic methods have been proposed that employ a variety of feature descriptors for the food item to be graded.
Machine learning and deep learning techniques dominate the top-performing methods.
Deep learning can operate on raw data and thus relieve the users from having to compute complex engineered features.
arXiv Detail & Related papers (2022-12-29T19:32:20Z) - Semantic Image Segmentation with Deep Learning for Vine Leaf Phenotyping [59.0626764544669]
In this study, we use Deep Learning methods to semantically segment grapevine leaves images in order to develop an automated object detection system for leaf phenotyping.
Our work contributes to plant lifecycle monitoring through which dynamic traits such as growth and development can be captured and quantified.
arXiv Detail & Related papers (2022-10-24T14:37:09Z) - Apple Counting using Convolutional Neural Networks [22.504279159923765]
Estimating accurate and reliable fruit and vegetable counts from images in real-world settings, such as orchards, is a challenging problem.
We formulate fruit counting from images as a multi-class classification problem and solve it by training a Convolutional Neural Network.
Our network outperforms it in three out of four datasets with a maximum of 94% accuracy.
arXiv Detail & Related papers (2022-08-24T14:13:40Z) - End-to-end deep learning for directly estimating grape yield from
ground-based imagery [53.086864957064876]
This study demonstrates the application of proximal imaging combined with deep learning for yield estimation in vineyards.
Three model architectures were tested: object detection, CNN regression, and transformer models.
The study showed the applicability of proximal imaging and deep learning for prediction of grapevine yield on a large scale.
arXiv Detail & Related papers (2022-08-04T01:34:46Z) - A methodology for detection and localization of fruits in apples
orchards from aerial images [0.0]
This work presents a methodology for automated fruit counting employing aerial-images.
It includes algorithms based on multiple view geometry to perform fruits tracking.
Preliminary assessments show correlations above 0.8 between fruit counting and true yield for apples.
arXiv Detail & Related papers (2021-10-24T01:57:52Z) - Potato Crop Stress Identification in Aerial Images using Deep
Learning-based Object Detection [60.83360138070649]
The paper presents an approach for analyzing aerial images of a potato crop using deep neural networks.
The main objective is to demonstrate automated spatial recognition of a healthy versus stressed crop at a plant level.
Experimental validation demonstrated the ability for distinguishing healthy and stressed plants in field images, achieving an average Dice coefficient of 0.74.
arXiv Detail & Related papers (2021-06-14T21:57:40Z) - A procedure for automated tree pruning suggestion using LiDAR scans of
fruit trees [0.0]
In fruit tree growth, pruning is an important management practice for preventing overcrowding, improving canopy access to light and promoting regrowth.
We present a framework for suggesting pruning strategies on LiDAR-scanned commercial fruit trees using a scoring function.
The light distribution was improved by up to 25.15%, demonstrating a 16% improvement over commercial pruning on a real tree, and certain cut points were discovered which improved light distribution with a smaller negative impact on tree volume.
arXiv Detail & Related papers (2021-02-07T02:18:56Z) - A CNN Approach to Simultaneously Count Plants and Detect Plantation-Rows
from UAV Imagery [56.10033255997329]
We propose a novel deep learning method based on a Convolutional Neural Network (CNN)
It simultaneously detects and geolocates plantation-rows while counting its plants considering highly-dense plantation configurations.
The proposed method achieved state-of-the-art performance for counting and geolocating plants and plant-rows in UAV images from different types of crops.
arXiv Detail & Related papers (2020-12-31T18:51:17Z) - Rectified Decision Trees: Exploring the Landscape of Interpretable and
Effective Machine Learning [66.01622034708319]
We propose a knowledge distillation based decision trees extension, dubbed rectified decision trees (ReDT)
We extend the splitting criteria and the ending condition of the standard decision trees, which allows training with soft labels.
We then train the ReDT based on the soft label distilled from a well-trained teacher model through a novel jackknife-based method.
arXiv Detail & Related papers (2020-08-21T10:45:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.