SUSY-Nonrelativistic Quantum Eigenspectral Energy Analysis for
Squared-Type Trigonometric Potentials Through Nikiforov-Uvarov Formalism
- URL: http://arxiv.org/abs/2208.11587v3
- Date: Wed, 22 Mar 2023 21:40:35 GMT
- Title: SUSY-Nonrelativistic Quantum Eigenspectral Energy Analysis for
Squared-Type Trigonometric Potentials Through Nikiforov-Uvarov Formalism
- Authors: Metin Aktas
- Abstract summary: We presentExplicit and analytical bound-state solutions of the Schrodinger equation for squared-form trigonometric potentials within the framework of supersymmetric quantum mechanics (SUSYQM)
It is remarkable to note that, when examined parametrically, they are of reliable and applicable forms concerning the mathematical treatment of various physical quantum systems prescribed in relativistic or nonrelativistic contexts.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Explicit and analytical bound-state solutions of the Schrodinger equation for
squared-form trigonometric potentials within the framework of supersymmetric
quantum mechanics (SUSYQM) are performed by implementing the Nikiforov-Uvarov
(NU) polynomial procedure. The first step requires a certain action to adopt an
appropriate ansatz superpotential W(x) for generating the potential pair as V1
(x) and V2(x). In the second process, inserting each potential for the
one-dimensional Schrodinger equation and solving the hypergeometric
differential equation with the NU method gives rise to normalized wave function
descriptions and algebraically corresponds to the characteristic SUSY quantum
energy eigenspectrum sets. It is remarkable to note that, when examined
parametrically, they are of reliable and applicable forms concerning the
mathematical treatment of various physical quantum systems prescribed in
relativistic or nonrelativistic contexts.
Related papers
- Quantum Circuits for the heat equation with physical boundary conditions via Schrodingerisation [33.76659022113328]
This paper explores the explicit design of quantum circuits for quantum simulation of partial differential equations (PDEs) with physical boundary conditions.
We present two methods for handling the inhomogeneous terms arising from time-dependent physical boundary conditions.
We then apply the quantum simulation technique from [CJL23] to transform the resulting non-autonomous system to an autonomous system in one higher dimension.
arXiv Detail & Related papers (2024-07-22T03:52:14Z) - A Theory of Quantum Jumps [44.99833362998488]
We study fluorescence and the phenomenon of quantum jumps'' in idealized models of atoms coupled to the quantized electromagnetic field.
Our results amount to a derivation of the fundamental randomness in the quantum-mechanical description of microscopic systems.
arXiv Detail & Related papers (2024-04-16T11:00:46Z) - General quantum algorithms for Hamiltonian simulation with applications
to a non-Abelian lattice gauge theory [44.99833362998488]
We introduce quantum algorithms that can efficiently simulate certain classes of interactions consisting of correlated changes in multiple quantum numbers.
The lattice gauge theory studied is the SU(2) gauge theory in 1+1 dimensions coupled to one flavor of staggered fermions.
The algorithms are shown to be applicable to higher-dimensional theories as well as to other Abelian and non-Abelian gauge theories.
arXiv Detail & Related papers (2022-12-28T18:56:25Z) - Analytical Ground- and Excited-State Gradients for Molecular Electronic
Structure Theory from Hybrid Quantum/Classical Methods [0.0]
We show how the resulting response contributions to the gradient can be evaluated with a quantum effort.
We numerically demonstrate the exactness the analytical gradients and discuss the magnitude of the quantum response contributions.
arXiv Detail & Related papers (2021-10-11T07:14:54Z) - On the properties of the asymptotic incompatibility measure in
multiparameter quantum estimation [62.997667081978825]
Incompatibility (AI) is a measure which quantifies the difference between the Holevo and the SLD scalar bounds.
We show that the maximum amount of AI is attainable only for quantum statistical models characterized by a purity larger than $mu_sf min = 1/(d-1)$.
arXiv Detail & Related papers (2021-07-28T15:16:37Z) - Eigenvalues and Eigenstates of Quantum Rabi Model [0.0]
We present an approach to the exact diagonalization of the quantum Rabi Hamiltonian.
It is shown that the obtained eigenstates can be represented in the basis of the eigenstates of the Jaynes-Cummings Hamiltonian.
arXiv Detail & Related papers (2021-04-26T17:45:41Z) - Bernstein-Greene-Kruskal approach for the quantum Vlasov equation [91.3755431537592]
The one-dimensional stationary quantum Vlasov equation is analyzed using the energy as one of the dynamical variables.
In the semiclassical case where quantum tunneling effects are small, an infinite series solution is developed.
arXiv Detail & Related papers (2021-02-18T20:55:04Z) - Benchmarking adaptive variational quantum eigensolvers [63.277656713454284]
We benchmark the accuracy of VQE and ADAPT-VQE to calculate the electronic ground states and potential energy curves.
We find both methods provide good estimates of the energy and ground state.
gradient-based optimization is more economical and delivers superior performance than analogous simulations carried out with gradient-frees.
arXiv Detail & Related papers (2020-11-02T19:52:04Z) - Effective technique of numerical investigation of systems with
complicated geometry of a potential [0.0]
We have developed the technique of a quantum wave impedance determination for the sequence of not only constant potentials but also for potentials of forms for which the solution of a Shr"odinger equation exists at least in terms of special functions.
Results can be applied to the numerical investigation of a quantum mechanical systems with complicated geometry (spatial structure) of a potential.
arXiv Detail & Related papers (2020-10-19T10:44:07Z) - Method of spectral Green functions in driven open quantum dynamics [77.34726150561087]
A novel method based on spectral Green functions is presented for the simulation of driven open quantum dynamics.
The formalism shows remarkable analogies to the use of Green functions in quantum field theory.
The method dramatically reduces computational cost compared with simulations based on solving the full master equation.
arXiv Detail & Related papers (2020-06-04T09:41:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.