General quantum algorithms for Hamiltonian simulation with applications
to a non-Abelian lattice gauge theory
- URL: http://arxiv.org/abs/2212.14030v3
- Date: Thu, 14 Dec 2023 18:40:43 GMT
- Title: General quantum algorithms for Hamiltonian simulation with applications
to a non-Abelian lattice gauge theory
- Authors: Zohreh Davoudi, Alexander F. Shaw, and Jesse R. Stryker
- Abstract summary: We introduce quantum algorithms that can efficiently simulate certain classes of interactions consisting of correlated changes in multiple quantum numbers.
The lattice gauge theory studied is the SU(2) gauge theory in 1+1 dimensions coupled to one flavor of staggered fermions.
The algorithms are shown to be applicable to higher-dimensional theories as well as to other Abelian and non-Abelian gauge theories.
- Score: 44.99833362998488
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: With a focus on universal quantum computing for quantum simulation, and
through the example of lattice gauge theories, we introduce rather general
quantum algorithms that can efficiently simulate certain classes of
interactions consisting of correlated changes in multiple (bosonic and
fermionic) quantum numbers with non-trivial functional coefficients. In
particular, we analyze diagonalization of Hamiltonian terms using a
singular-value decomposition technique, and discuss how the achieved diagonal
unitaries in the digitized time-evolution operator can be implemented. The
lattice gauge theory studied is the SU(2) gauge theory in 1+1 dimensions
coupled to one flavor of staggered fermions, for which a complete
quantum-resource analysis within different computational models is presented.
The algorithms are shown to be applicable to higher-dimensional theories as
well as to other Abelian and non-Abelian gauge theories. The example chosen
further demonstrates the importance of adopting efficient theoretical
formulations: it is shown that an explicitly gauge-invariant formulation using
loop, string, and hadron degrees of freedom simplifies the algorithms and
lowers the cost compared with the standard formulations based on
angular-momentum as well as the Schwinger-boson degrees of freedom. The
loop-string-hadron formulation further retains the non-Abelian gauge symmetry
despite the inexactness of the digitized simulation, without the need for
costly controlled operations. Such theoretical and algorithmic considerations
are likely to be essential in quantumly simulating other complex theories of
relevance to nature.
Related papers
- An efficient finite-resource formulation of non-Abelian lattice gauge theories beyond one dimension [0.0]
We propose a resource-efficient method to compute the running of the coupling in non-Abelian gauge theories beyond one spatial dimension.
Our method enables computations at arbitrary values of the bare coupling and lattice spacing with current quantum computers, simulators and tensor-network calculations.
arXiv Detail & Related papers (2024-09-06T17:59:24Z) - Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - A hybrid quantum-classical algorithm for multichannel quantum scattering
of atoms and molecules [62.997667081978825]
We propose a hybrid quantum-classical algorithm for solving the Schr"odinger equation for atomic and molecular collisions.
The algorithm is based on the $S$-matrix version of the Kohn variational principle, which computes the fundamental scattering $S$-matrix.
We show how the algorithm could be scaled up to simulate collisions of large polyatomic molecules.
arXiv Detail & Related papers (2023-04-12T18:10:47Z) - Overcoming exponential volume scaling in quantum simulations of lattice
gauge theories [1.5675763601034223]
We present a formulation of a compact U(1) gauge theory in 2+1 dimensions free of gauge redundancies.
A naive implementation onto a quantum circuit has a gate count that scales exponentially with the volume.
We discuss how to break this exponential scaling by performing an operator redefinition that reduces the non-locality of the Hamiltonian.
arXiv Detail & Related papers (2022-12-09T01:18:46Z) - Gauge Equivariant Neural Networks for 2+1D U(1) Gauge Theory Simulations
in Hamiltonian Formulation [1.7549208519206603]
In quantum simulations of lattice gauge theory, an important step is to construct a wave function that obeys gauge symmetry.
We have developed gauge equivariant neural network wave function techniques for simulating continuous-variable quantum lattice gauge theories.
arXiv Detail & Related papers (2022-11-06T18:38:19Z) - Variational Adiabatic Gauge Transformation on real quantum hardware for
effective low-energy Hamiltonians and accurate diagonalization [68.8204255655161]
We introduce the Variational Adiabatic Gauge Transformation (VAGT)
VAGT is a non-perturbative hybrid quantum algorithm that can use nowadays quantum computers to learn the variational parameters of the unitary circuit.
The accuracy of VAGT is tested trough numerical simulations, as well as simulations on Rigetti and IonQ quantum computers.
arXiv Detail & Related papers (2021-11-16T20:50:08Z) - Quantum Simulation of Conformal Field Theory [77.34726150561087]
We describe a quantum algorithm to simulate the dynamics of conformal field theories.
A full analysis of the approximation errors suggests near-term applicability.
arXiv Detail & Related papers (2021-09-29T06:44:33Z) - Quantum simulation of gauge theory via orbifold lattice [47.28069960496992]
We propose a new framework for simulating $textU(k)$ Yang-Mills theory on a universal quantum computer.
We discuss the application of our constructions to computing static properties and real-time dynamics of Yang-Mills theories.
arXiv Detail & Related papers (2020-11-12T18:49:11Z) - Tensor lattice field theory with applications to the renormalization
group and quantum computing [0.0]
We discuss the successes and limitations of statistical sampling for a sequence of models studied in the context of lattice QCD.
We show that these lattice models can be reformulated using tensorial methods where the field integrations in the path-integral formalism are replaced by discrete sums.
We derive Hamiltonians suitable to perform quantum simulation experiments, for instance using cold atoms, or to be programmed on existing quantum computers.
arXiv Detail & Related papers (2020-10-13T16:46:34Z) - Search for Efficient Formulations for Hamiltonian Simulation of
non-Abelian Lattice Gauge Theories [0.0]
Hamiltonian formulation of lattice gauge theories (LGTs) is the most natural framework for the purpose of quantum simulation.
It remains an important task to identify the most accurate, while computationally economic, Hamiltonian formulation(s) in such theories.
This paper is a first step toward addressing this question in the case of non-Abelian LGTs.
arXiv Detail & Related papers (2020-09-24T16:44:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.