Finite-size security proof of binary-modulation continuous-variable
quantum key distribution using only heterodyne measurement
- URL: http://arxiv.org/abs/2208.11983v1
- Date: Thu, 25 Aug 2022 10:27:27 GMT
- Title: Finite-size security proof of binary-modulation continuous-variable
quantum key distribution using only heterodyne measurement
- Authors: Shinichiro Yamano, Takaya Matsuura, Yui Kuramochi, Toshihiko Sasaki,
and Masato Koashi
- Abstract summary: Continuous-variable quantum key distribution (CV-QKD) has many practical advantages including compatibility with current optical communication technology.
We propose an all-heterodyne CV-QKD protocol with binary modulation and prove its security against general attacks in the finite-key regime.
- Score: 0.9786690381850356
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Continuous-variable quantum key distribution (CV-QKD) has many practical
advantages including compatibility with current optical communication
technology. Implementation using heterodyne measurements is particularly
attractive since it eliminates the need for active phase locking of the remote
pair of local oscillators, but the full security of CV QKD with discrete
modulation was only proved for a protocol using homodyne measurements. Here we
propose an all-heterodyne CV-QKD protocol with binary modulation and prove its
security against general attacks in the finite-key regime. Although replacing a
homodyne measurement with a heterodyne measurement would be naively expected to
incur a 3-dB penalty in the rate-distance curve, our proof achieves a key rate
with only a 1-dB penalty.
Related papers
- Composable free-space continuous-variable quantum key distribution using discrete modulation [3.864405940022529]
Continuous-variable (CV) quantum key distribution (QKD) allows for quantum secure communication.
We present a CV QKD system using discrete modulation that is especially designed for urban atmospheric channels.
This will allow to expand CV QKD networks beyond the existing fiber backbone.
arXiv Detail & Related papers (2024-10-16T18:02:53Z) - Practical quantum secure direct communication with squeezed states [55.41644538483948]
We report the first table-top experimental demonstration of a CV-QSDC system and assess its security.
This realization paves the way into future threat-less quantum metropolitan networks, compatible with coexisting advanced wavelength division multiplexing (WDM) systems.
arXiv Detail & Related papers (2023-06-25T19:23:42Z) - Two-mode squeezing over deployed fiber coexisting with conventional
communications [55.41644538483948]
Multi-mode squeezing is critical for enabling CV quantum networks and distributed quantum sensing.
To date, multi-mode squeezing measured by homodyne detection has been limited to single-room experiments.
This demonstration enables future applications in quantum networks and quantum sensing that rely on distributed multi-mode squeezing.
arXiv Detail & Related papers (2023-04-20T02:29:33Z) - Refined finite-size analysis of binary-modulation continuous-variable
quantum key distribution [0.562479170374811]
We extend the security proof based on complementarity, which is used in the discrete-variable QKD, to the previously developed binary-modulation CV-QKD protocols.
Notably, the key rate in the limit scales linearly against the attenuation rate, which is known to be optimal scaling but is not achieved in previous finite-size analyses.
arXiv Detail & Related papers (2023-01-09T05:11:23Z) - Discrete-variable quantum key distribution with homodyne detection [14.121646217925441]
We propose a protocol that combines the simplicity of quantum state preparation in DV-QKD together with the cost-effective and high-bandwidth of homodyne detectors used in CV-QKD.
Our simulation suggests that the protocol is suitable for secure and high-speed practical key distribution over distances.
arXiv Detail & Related papers (2021-09-01T17:12:28Z) - Fault-tolerant parity readout on a shuttling-based trapped-ion quantum
computer [64.47265213752996]
We experimentally demonstrate a fault-tolerant weight-4 parity check measurement scheme.
We achieve a flag-conditioned parity measurement single-shot fidelity of 93.2(2)%.
The scheme is an essential building block in a broad class of stabilizer quantum error correction protocols.
arXiv Detail & Related papers (2021-07-13T20:08:04Z) - Homodyne Detection Quadrature Phase Shift Keying Continuous-Variable
Quantum Key Distribution with High Excess Noise Tolerance [7.87972015113057]
We propose a homodyne detection protocol using the quadrature phase shift keying technique.
By limiting information leakage, our proposed protocol enhances excess noise tolerance to a high level.
Our results imply that the current protocol is able to distribute keys in nearly intercity area.
arXiv Detail & Related papers (2021-04-22T16:10:35Z) - Composably secure data processing for Gaussian-modulated continuous
variable quantum key distribution [58.720142291102135]
Continuous-variable quantum key distribution (QKD) employs the quadratures of a bosonic mode to establish a secret key between two remote parties.
We consider a protocol with homodyne detection in the general setting of composable finite-size security.
In particular, we analyze the high signal-to-noise regime which requires the use of high-rate (non-binary) low-density parity check codes.
arXiv Detail & Related papers (2021-03-30T18:02:55Z) - Round-robin differential phase-time-shifting protocol for quantum key
distribution: theory and experiment [58.03659958248968]
Quantum key distribution (QKD) allows the establishment of common cryptographic keys among distant parties.
Recently, a QKD protocol that circumvents the need for monitoring signal disturbance, has been proposed and demonstrated in initial experiments.
We derive the security proofs of the round-robin differential phase-time-shifting protocol in the collective attack scenario.
Our results show that the RRDPTS protocol can achieve higher secret key rate in comparison with the RRDPS, in the condition of high quantum bit error rate.
arXiv Detail & Related papers (2021-03-15T15:20:09Z) - Efficient and robust certification of genuine multipartite entanglement
in noisy quantum error correction circuits [58.720142291102135]
We introduce a conditional witnessing technique to certify genuine multipartite entanglement (GME)
We prove that the detection of entanglement in a linear number of bipartitions by a number of measurements scales linearly, suffices to certify GME.
We apply our method to the noisy readout of stabilizer operators of the distance-three topological color code and its flag-based fault-tolerant version.
arXiv Detail & Related papers (2020-10-06T18:00:07Z) - Finite-size security of continuous-variable quantum key distribution
with digital signal processing [1.0499611180329804]
We propose a tight and robust method of estimating fidelity of an optical pulse to a coherent state via heterodyne measurements.
We then construct a binary phase CV QKD protocol and prove its security in the finite-key-size regime against general coherent attacks.
arXiv Detail & Related papers (2020-06-08T15:03:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.