Composable free-space continuous-variable quantum key distribution using discrete modulation
- URL: http://arxiv.org/abs/2410.12915v1
- Date: Wed, 16 Oct 2024 18:02:53 GMT
- Title: Composable free-space continuous-variable quantum key distribution using discrete modulation
- Authors: Kevin Jaksch, Thomas Dirmeier, Yannick Weiser, Stefan Richter, Ömer Bayraktar, Bastian Hacker, Conrad Rösler, Imran Khan, Stefan Petscharning, Thomas Grafenauer, Michael Hentschel, Bernhard Ömer, Christoph Pacher, Florian Kanitschar, Twesh Upadhyaya, Jie Lin, Norbert Lütkenhaus, Gerd Leuchs, Christoph Marquardt,
- Abstract summary: Continuous-variable (CV) quantum key distribution (QKD) allows for quantum secure communication.
We present a CV QKD system using discrete modulation that is especially designed for urban atmospheric channels.
This will allow to expand CV QKD networks beyond the existing fiber backbone.
- Score: 3.864405940022529
- License:
- Abstract: Continuous-variable (CV) quantum key distribution (QKD) allows for quantum secure communication with the benefit of being close to existing classical coherent communication. In recent years, CV QKD protocols using a discrete number of displaced coherent states have been studied intensively, as the modulation can be directly implemented with real devices with a finite digital resolution. However, the experimental demonstrations until now only calculated key rates in the asymptotic regime. To be used in cryptographic applications, a QKD system has to generate keys with composable security in the finite-size regime. In this paper, we present a CV QKD system using discrete modulation that is especially designed for urban atmospheric channels. For this, we use polarization encoding to cope with the turbulent but non-birefringent atmosphere. This will allow to expand CV QKD networks beyond the existing fiber backbone. In a first laboratory demonstration, we implemented a novel type of security proof allowing to calculate composable finite-size key rates against i.i.d. collective attacks without any Gaussian assumptions. We applied the full QKD protocol including a QRNG, error correction and privacy amplification to extract secret keys. In particular, we studied the impact of frame errors on the actual key generation.
Related papers
- Coding-Based Hybrid Post-Quantum Cryptosystem for Non-Uniform Information [53.85237314348328]
We introduce for non-uniform messages a novel hybrid universal network coding cryptosystem (NU-HUNCC)
We show that NU-HUNCC is information-theoretic individually secured against an eavesdropper with access to any subset of the links.
arXiv Detail & Related papers (2024-02-13T12:12:39Z) - Practical quantum secure direct communication with squeezed states [55.41644538483948]
We report the first table-top experimental demonstration of a CV-QSDC system and assess its security.
This realization paves the way into future threat-less quantum metropolitan networks, compatible with coexisting advanced wavelength division multiplexing (WDM) systems.
arXiv Detail & Related papers (2023-06-25T19:23:42Z) - Free Space Continuous Variable Quantum Key Distribution with Discrete
Phases [1.7891363899302908]
Continuous variable (CV) QKD offers many advantages over discrete variable (DV) QKD.
We demonstrate a discrete modulated CVQKD protocol in the free space which is robust against polarization drift.
arXiv Detail & Related papers (2023-05-22T15:25:54Z) - Experimental Demonstration of Discrete Modulation Formats for Continuous
Variable Quantum Key Distribution [0.23090185577016442]
Quantum key distribution (QKD) enables the establishment of secret keys between users connected via a channel vulnerable to eavesdropping.
We experimentally implement a protocol that allows for arbitrary, Gaussian-like, discrete modulations, whose security is based on a theoretical proof.
These modulation formats are compatible with the use of powerful tools of coherent optical telecommunication, allowing our system to reach a performance of tens of megabit per second secret key rates over 25 km.
arXiv Detail & Related papers (2022-07-24T09:45:07Z) - Improved coherent one-way quantum key distribution for high-loss
channels [0.0]
We present a simple variant of COW-QKD and prove its security in the infinite-key limit.
Remarkably, the resulting key rate of our protocol is comparable with both the existing upper-bound on COW-QKD key rate and the secure key rate of the coherent-state BB84 protocol.
arXiv Detail & Related papers (2022-06-17T00:07:03Z) - Modulation leakage-free continuous-variable quantum key distribution [1.8268488712787332]
Continuous-variable (CV) QKD based on coherent states is an attractive scheme for secure communication.
This work is a step towards protecting CVQKD systems against practical imperfections of physical devices and operational limitations without performance degradation.
arXiv Detail & Related papers (2022-05-15T10:07:19Z) - Towards fully-fledged quantum and classical communication over deployed
fiber with up-conversion module [47.187609203210705]
We propose and demonstrate a new method, based on up-conversion assisted receiver, for co-propagating classical light and QKD signals.
Our proposal exhibits higher tolerance for noise in comparison to the standard receiver, thus enabling the distribution of secret keys in the condition of 4 dB-higher classical power.
arXiv Detail & Related papers (2021-06-09T13:52:27Z) - Composably secure data processing for Gaussian-modulated continuous
variable quantum key distribution [58.720142291102135]
Continuous-variable quantum key distribution (QKD) employs the quadratures of a bosonic mode to establish a secret key between two remote parties.
We consider a protocol with homodyne detection in the general setting of composable finite-size security.
In particular, we analyze the high signal-to-noise regime which requires the use of high-rate (non-binary) low-density parity check codes.
arXiv Detail & Related papers (2021-03-30T18:02:55Z) - Round-robin differential phase-time-shifting protocol for quantum key
distribution: theory and experiment [58.03659958248968]
Quantum key distribution (QKD) allows the establishment of common cryptographic keys among distant parties.
Recently, a QKD protocol that circumvents the need for monitoring signal disturbance, has been proposed and demonstrated in initial experiments.
We derive the security proofs of the round-robin differential phase-time-shifting protocol in the collective attack scenario.
Our results show that the RRDPTS protocol can achieve higher secret key rate in comparison with the RRDPS, in the condition of high quantum bit error rate.
arXiv Detail & Related papers (2021-03-15T15:20:09Z) - Device-Independent Quantum Key Distribution with Random Key Basis [0.0]
Device-independent quantum key distribution (DIQKD) is the art of using untrusted devices to distribute secret keys in an insecure network.
We show that our protocol significantly improves over the original DIQKD protocol, enabling positive keys in the high noise regime for the first time.
arXiv Detail & Related papers (2020-05-06T09:57:47Z) - Backflash Light as a Security Vulnerability in Quantum Key Distribution
Systems [77.34726150561087]
We review the security vulnerabilities of quantum key distribution (QKD) systems.
We mainly focus on a particular effect known as backflash light, which can be a source of eavesdropping attacks.
arXiv Detail & Related papers (2020-03-23T18:23:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.