論文の概要: Fed-FSNet: Mitigating Non-I.I.D. Federated Learning via Fuzzy
Synthesizing Network
- arxiv url: http://arxiv.org/abs/2208.12044v1
- Date: Sun, 21 Aug 2022 18:40:51 GMT
- ステータス: 処理完了
- システム内更新日: 2022-08-26 13:18:21.794458
- Title: Fed-FSNet: Mitigating Non-I.I.D. Federated Learning via Fuzzy
Synthesizing Network
- Title(参考訳): Fed-FSNet:ファジィ合成ネットワークによる非I.I.D.フェデレーション学習の緩和
- Authors: Jingcai Guo, Song Guo, Jie Zhang, Ziming Liu
- Abstract要約: フェデレートラーニング(FL)は、将来性のあるプライバシ保護分散機械学習フレームワークとして登場した。
我々は、Fed-FSNetと呼ばれる新しいFLトレーニングフレームワークを提案し、Fed-FSNet(Fed-FSNet)を適切に設計し、非I.I.D.のオープンソース問題を軽減する。
- 参考スコア(独自算出の注目度): 19.23943687834319
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated learning (FL) has emerged as a promising privacy-preserving
distributed machine learning framework recently. It aims at collaboratively
learning a shared global model by performing distributed training locally on
edge devices and aggregating local models into a global one without centralized
raw data sharing in the cloud server. However, due to the large local data
heterogeneities (Non-I.I.D. data) across edge devices, the FL may easily obtain
a global model that can produce more shifted gradients on local datasets,
thereby degrading the model performance or even suffering from the
non-convergence during training. In this paper, we propose a novel FL training
framework, dubbed Fed-FSNet, using a properly designed Fuzzy Synthesizing
Network (FSNet) to mitigate the Non-I.I.D. FL at-the-source. Concretely, we
maintain an edge-agnostic hidden model in the cloud server to estimate a
less-accurate while direction-aware inversion of the global model. The hidden
model can then fuzzily synthesize several mimic I.I.D. data samples (sample
features) conditioned on only the global model, which can be shared by edge
devices to facilitate the FL training towards faster and better convergence.
Moreover, since the synthesizing process involves neither access to the
parameters/updates of local models nor analyzing individual local model
outputs, our framework can still ensure the privacy of FL. Experimental results
on several FL benchmarks demonstrate that our method can significantly mitigate
the Non-I.I.D. issue and obtain better performance against other representative
methods.
- Abstract(参考訳): フェデレーテッド・ラーニング(FL)は、最近、有望なプライバシー保護分散機械学習フレームワークとして登場した。
エッジデバイス上でローカルに分散トレーニングを実行し、クラウドサーバに生のデータ共有を集中せずにグローバルモデルに集約することで、共有グローバルモデルを共同学習することを目指している。
しかし、エッジデバイス間の大きなローカルデータ不均一性(Non-I.D.データ)のため、FLはローカルデータセットによりシフトした勾配を生成できるグローバルモデルを容易に得ることができ、それによってモデルの性能が低下したり、トレーニング中に非収束に苦しむことさえできる。
本稿では,Fed-FSNet(Fed-FSNet)と呼ばれる新しいFLトレーニングフレームワークを提案する。
具体的には、クラウドサーバにエッジに依存しない隠れモデルを保持し、グローバルモデルの方向対応インバージョンを推定する。
隠れたモデルは、グローバルモデルのみに条件付きI.I.D.データサンプル(サンプル特徴)をファジィに合成し、エッジデバイスで共有することで、FLトレーニングを高速でよりよく収束させる。
さらに、この合成プロセスは、ローカルモデルのパラメータや更新情報へのアクセスや、個々のローカルモデル出力の分析を伴わないため、FLのプライバシを保証できる。
いくつかのFLベンチマークによる実験結果から,本手法は非I.D.問題を大幅に軽減し,他の代表手法よりも優れた性能が得られることが示された。
関連論文リスト
- Stragglers-Aware Low-Latency Synchronous Federated Learning via Layer-Wise Model Updates [71.81037644563217]
同期フェデレーションラーニング(FL)は、協調エッジラーニングの一般的なパラダイムである。
一部のデバイスは計算資源が限られており、様々な可用性があるため、FLレイテンシはストラグラーに非常に敏感である。
本稿では,NNの最適化手法をバックプロパゲーションにより活用し,グローバルモデルを階層的に更新するストラグラー対応層対応学習(SALF)を提案する。
論文 参考訳(メタデータ) (2024-03-27T09:14:36Z) - Straggler-resilient Federated Learning: Tackling Computation
Heterogeneity with Layer-wise Partial Model Training in Mobile Edge Network [4.1813760301635705]
本稿では,FedPMT(Federated partial Model Training)を提案する。
したがって、FedPMTのすべてのデバイスは、グローバルモデルの最も重要な部分を優先している。
実証的な結果は、FedPMTが既存のベンチマークFedDropを大きく上回っていることを示している。
論文 参考訳(メタデータ) (2023-11-16T16:30:04Z) - Tunable Soft Prompts are Messengers in Federated Learning [55.924749085481544]
フェデレートラーニング(FL)は、複数の参加者が分散データソースを使用して機械学習モデルを協調的にトレーニングすることを可能にする。
FLにおけるモデルプライバシ保護の欠如は無視できない課題となっている。
そこで本研究では,ソフトプロンプトによって参加者間の情報交換を実現する新しいFLトレーニング手法を提案する。
論文 参考訳(メタデータ) (2023-11-12T11:01:10Z) - Adaptive Model Pruning and Personalization for Federated Learning over
Wireless Networks [72.59891661768177]
フェデレーション学習(FL)は、データプライバシを保護しながら、エッジデバイス間での分散学習を可能にする。
これらの課題を克服するために、部分的なモデルプルーニングとパーソナライズを備えたFLフレームワークを検討する。
このフレームワークは、学習モデルを、データ表現を学ぶためにすべてのデバイスと共有されるモデルプルーニングと、特定のデバイスのために微調整されるパーソナライズされた部分とで、グローバルな部分に分割する。
論文 参考訳(メタデータ) (2023-09-04T21:10:45Z) - Rethinking Client Drift in Federated Learning: A Logit Perspective [125.35844582366441]
フェデレートラーニング(FL)は、複数のクライアントが分散した方法で協調的に学習し、プライバシ保護を可能にする。
その結果,局所モデルとグローバルモデルとのロジット差は,モデルが継続的に更新されるにつれて増大することがわかった。
我々はFedCSDと呼ばれる新しいアルゴリズムを提案する。FedCSDは、ローカルモデルとグローバルモデルを調整するためのフェデレーションフレームワークにおけるクラスプロトタイプの類似度蒸留である。
論文 参考訳(メタデータ) (2023-08-20T04:41:01Z) - FedSoup: Improving Generalization and Personalization in Federated
Learning via Selective Model Interpolation [32.36334319329364]
クロスサイロフェデレーション学習(FL)は、データセンタに分散したデータセット上での機械学習モデルの開発を可能にする。
近年の研究では、現在のFLアルゴリズムは、分布シフトに直面した場合、局所的な性能とグローバルな性能のトレードオフに直面している。
地域とグローバルのパフォーマンスのトレードオフを最適化する新しいフェデレーションモデルスープ手法を提案する。
論文 参考訳(メタデータ) (2023-07-20T00:07:29Z) - FedMR: Fedreated Learning via Model Recombination [7.404225808071622]
Federated Learning (FL)は、クライアント間でのグローバルモデルトレーニングを可能にする。
既存のFLメソッドは、Federated Averaging(FedAvg)ベースのアグリゲーションに依存しています。
本稿ではFedMR(Federating Model Recombination)という新しいFLパラダイムを提案する。
論文 参考訳(メタデータ) (2022-08-16T11:30:19Z) - Fine-tuning Global Model via Data-Free Knowledge Distillation for
Non-IID Federated Learning [86.59588262014456]
フェデレートラーニング(Federated Learning, FL)は、プライバシ制約下での分散学習パラダイムである。
サーバ内のグローバルモデル(FedFTG)を微調整するデータフリー知識蒸留法を提案する。
私たちのFedFTGは最先端(SOTA)のFLアルゴリズムよりも優れており、FedAvg、FedProx、FedDyn、SCAFFOLDの強化のための強力なプラグインとして機能します。
論文 参考訳(メタデータ) (2022-03-17T11:18:17Z) - Federated Learning With Quantized Global Model Updates [84.55126371346452]
モバイル端末がローカルデータセットを使用してグローバルモデルをトレーニングできるフェデレーション学習について検討する。
本稿では,大域的モデルと局所的モデル更新の両方を,送信前に量子化する損失FL(LFL)アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-06-18T16:55:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。