Quantum superpositions of Minkowski spacetime
- URL: http://arxiv.org/abs/2208.12083v2
- Date: Tue, 25 Oct 2022 02:36:24 GMT
- Title: Quantum superpositions of Minkowski spacetime
- Authors: Joshua Foo, Cemile Senem Arabaci, Magdalena Zych, and Robert B. Mann
- Abstract summary: "Spacetime superpositions" are quantum superpositions of different spacetimes not related by a global coordinate transformation.
We consider the quantum-gravitational effects produced by superpositions of periodically identified Minkowski spacetime.
We show that the detector's response exhibits discontinuous resonances at rational ratios of the superposed periodic length scale.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Within any anticipated unifying theory of quantum gravity, it should be
meaningful to combine the fundamental notions of quantum superposition and
spacetime to obtain so-called "spacetime superpositions": that is, quantum
superpositions of different spacetimes not related by a global coordinate
transformation. Here we consider the quantum-gravitational effects produced by
superpositions of periodically identified Minkowski spacetime (i.e.\ Minkowski
spacetime with a periodic boundary condition) with different characteristic
lengths. By coupling relativistic quantum matter to fields on such a spacetime
background (which we model using the Unruh-deWitt particle detector model), we
are able to show how one can in-principle "measure" the field-theoretic effects
produced by such a spacetime. We show that the detector's response exhibits
discontinuous resonances at rational ratios of the superposed periodic length
scale.
Related papers
- Looking for Carroll particles in two time spacetime [55.2480439325792]
Carroll particles with a non-vanishing value of energy are described in the framework of two time physics.
We construct the quantum theory of such a particle using an unexpected correspondence between our parametrization and that obtained by Bars for the hydrogen atom in 1999.
arXiv Detail & Related papers (2023-10-29T15:51:41Z) - Quantum conformal symmetries for spacetimes in superposition [0.0]
We build an explicit quantum operator that can map states describing a quantum field on a superposition of spacetimes to states representing a quantum field with a superposition of masses on a Minkowski background.
It can be used to import the phenomenon of particle production in curved spacetime to its conformally equivalent counterpart, thus revealing new features in modified Minkowski spacetime.
arXiv Detail & Related papers (2022-06-30T18:00:02Z) - Quantum dynamics corresponding to chaotic BKL scenario [62.997667081978825]
Quantization smears the gravitational singularity avoiding its localization in the configuration space.
Results suggest that the generic singularity of general relativity can be avoided at quantum level.
arXiv Detail & Related papers (2022-04-24T13:32:45Z) - Quantum time dilation in a gravitational field [39.58317527488534]
We investigate how the superposition principle affects the gravitational time dilation observed by a simple clock.
We show that the emission rate of an atom prepared in a coherent superposition of separated wave packets in a gravitational field is different from the emission rate of an atom in a classical mixture of these packets.
arXiv Detail & Related papers (2022-04-22T10:02:21Z) - Schr\"odinger's Black Hole Cat [0.0]
We show how to describe such "spacetime superpositions" and explore effects they induce upon quantum matter.
Our approach capitalizes on standard tools of quantum field theory in curved space.
arXiv Detail & Related papers (2022-04-01T12:11:36Z) - Quantum signatures of black hole mass superpositions [0.0]
We apply our approach to analyze the dynamics of a detector in a spacetime generated by a BTZ black hole in a superposition of masses.
We find that the detector exhibits signatures of quantum-gravitational effects corroborating Bekenstein's seminal conjecture concerning the quantized mass spectrum of black holes in quantum gravity.
arXiv Detail & Related papers (2021-11-26T05:20:25Z) - Time and Evolution in Quantum and Classical Cosmology [68.8204255655161]
We show that it is neither necessary nor sufficient for the Poisson bracket between the time variable and the super-Hamiltonian to be equal to unity in all of the phase space.
We also discuss the question of switching between different internal times as well as the Montevideo interpretation of quantum theory.
arXiv Detail & Related papers (2021-07-02T09:17:55Z) - Spacetime effects on wavepackets of coherent light [24.587462517914865]
We introduce an operational way to distinguish between the overall shift in the pulse wavepacket and its genuine deformation after propagation.
We then apply our technique to quantum states of photons that are coherent in the frequency degree of freedom.
We find that the quantum coherence initially present can enhance the deformation induced by propagation in a curved background.
arXiv Detail & Related papers (2021-06-23T14:20:19Z) - Schr\"odinger's cat for de Sitter spacetime [0.0]
We provide a new phenomenological description for the response of quantum probes on a spacetime manifold in quantum superpositions.
Applying this approach to static de Sitter space, we discover scenarios in which the effects produced by the quantum spacetime are operationally indistinguishable from those induced by superpositions of Rindler trajectories in Minkowski spacetime.
The distinguishability of such quantum spacetimes from superpositions of trajectories in flat space reduces to the equivalence or non-equivalence of the field correlations between the superposed amplitudes.
arXiv Detail & Related papers (2020-12-18T02:54:35Z) - Projection evolution and quantum spacetime [68.8204255655161]
We discuss the problem of time in quantum mechanics.
An idea of construction of a quantum spacetime as a special set of the allowed states is presented.
An example of a structureless quantum Minkowski-like spacetime is also considered.
arXiv Detail & Related papers (2019-10-24T14:54:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.