Note on the local calculation of decoherence of quantum superpositions in de Sitter spacetime
- URL: http://arxiv.org/abs/2501.00213v1
- Date: Tue, 31 Dec 2024 01:30:04 GMT
- Title: Note on the local calculation of decoherence of quantum superpositions in de Sitter spacetime
- Authors: Ran Li,
- Abstract summary: We study the decoherence effect of quantum superposition in de Sitter spacetime due to the presence of the cosmological horizon.
We compute the entangling particle numbers in scalar field, electromagnetic field, and gravitational field scenarios.
- Score: 2.212209097253224
- License:
- Abstract: We study the decoherence effect of quantum superposition in de Sitter (dS) spacetime due to the presence of the cosmological horizon. Using the algebraic approach of quantum field theory on curved spacetime, we derive the precise expression for the expected number of entangling particles in the scalar field case. This expression establishes the relation between the decoherence and the local two-point correlation function. Specifically, we analyze the quantum superposition Gendankenexperiment performed by a local observer at the center of dS spacetime. We compute the entangling particle numbers in scalar field, electromagnetic field, and gravitational field scenarios. It is demonstrated that the quantum spatial superposition state can be decohered by emitting entangling particles into the cosmological horizon. Our setup is equivalent to an accelerating observer in 5-dimensional Minkowski spacetime. The results for the scalar and electromagnetic cases are consistent with those obtained in Ref.[1], which investigated the decoherence effect from the perspective of an accelerating observer in Minkovski spacetime. However, our result fixes the numerical prefactor of the gravitational decoherence.
Related papers
- Entanglement harvesting in quantum superposed spacetime [0.10686401485328585]
We investigate the phenomenon of entanglement harvesting for a spacetime in quantum superposition.
We find that the superposed nature of spacetime induces interference effects that can significantly enhance entanglement for both twisted and untwisted field.
arXiv Detail & Related papers (2024-12-20T13:18:22Z) - Maximal steered coherence in the background of Schwarzschild space-time [9.092982651471674]
We find that as the Hawking temperature increases, the physically accessible MSC degrades while the unaccessible MSC increases.
Our findings illuminate the intricate dynamics of quantum information in the vicinity of black holes.
arXiv Detail & Related papers (2024-08-22T13:40:33Z) - Particle detectors in superposition in de Sitter spacetime [0.0]
Cosmological particle creation is the phenomenon by which the expansion of spacetime results in the production of particles of a given quantum field in that spacetime.
We study this phenomenon by considering a multi-level quantum particle detector in de Sitter spacetime coupled to a massless real quantum scalar field.
The main novel result is that, due to the quantum nature of the superposition of trajectories, the state of the detector after interaction with the field is not only a mixture of the thermal states that would be expected from each individual static trajectory but rather exhibits additional coherences due to interferences between the different trajectories.
arXiv Detail & Related papers (2024-03-04T14:45:33Z) - Looking for Carroll particles in two time spacetime [55.2480439325792]
Carroll particles with a non-vanishing value of energy are described in the framework of two time physics.
We construct the quantum theory of such a particle using an unexpected correspondence between our parametrization and that obtained by Bars for the hydrogen atom in 1999.
arXiv Detail & Related papers (2023-10-29T15:51:41Z) - Fermion production at the boundary of an expanding universe: a cold-atom
gravitational analogue [68.8204255655161]
We study the phenomenon of cosmological particle production of Dirac fermions in a Friedman-Robertson-Walker spacetime.
We present a scheme for the quantum simulation of this gravitational analogue by means of ultra-cold atoms in Raman optical lattices.
arXiv Detail & Related papers (2022-12-02T18:28:23Z) - Quantum superpositions of Minkowski spacetime [0.0]
"Spacetime superpositions" are quantum superpositions of different spacetimes not related by a global coordinate transformation.
We consider the quantum-gravitational effects produced by superpositions of periodically identified Minkowski spacetime.
We show that the detector's response exhibits discontinuous resonances at rational ratios of the superposed periodic length scale.
arXiv Detail & Related papers (2022-08-25T13:31:05Z) - Quantum time dilation in a gravitational field [39.58317527488534]
We investigate how the superposition principle affects the gravitational time dilation observed by a simple clock.
We show that the emission rate of an atom prepared in a coherent superposition of separated wave packets in a gravitational field is different from the emission rate of an atom in a classical mixture of these packets.
arXiv Detail & Related papers (2022-04-22T10:02:21Z) - Quantum signatures of black hole mass superpositions [0.0]
We apply our approach to analyze the dynamics of a detector in a spacetime generated by a BTZ black hole in a superposition of masses.
We find that the detector exhibits signatures of quantum-gravitational effects corroborating Bekenstein's seminal conjecture concerning the quantized mass spectrum of black holes in quantum gravity.
arXiv Detail & Related papers (2021-11-26T05:20:25Z) - Schr\"odinger's cat for de Sitter spacetime [0.0]
We provide a new phenomenological description for the response of quantum probes on a spacetime manifold in quantum superpositions.
Applying this approach to static de Sitter space, we discover scenarios in which the effects produced by the quantum spacetime are operationally indistinguishable from those induced by superpositions of Rindler trajectories in Minkowski spacetime.
The distinguishability of such quantum spacetimes from superpositions of trajectories in flat space reduces to the equivalence or non-equivalence of the field correlations between the superposed amplitudes.
arXiv Detail & Related papers (2020-12-18T02:54:35Z) - Quantum particle across Grushin singularity [77.34726150561087]
We study the phenomenon of transmission across the singularity that separates the two half-cylinders.
All the local realisations of the free (Laplace-Beltrami) quantum Hamiltonian are examined as non-equivalent protocols of transmission/reflection.
This allows to comprehend the distinguished status of the so-called bridging' transmission protocol previously identified in the literature.
arXiv Detail & Related papers (2020-11-27T12:53:23Z) - Projection evolution and quantum spacetime [68.8204255655161]
We discuss the problem of time in quantum mechanics.
An idea of construction of a quantum spacetime as a special set of the allowed states is presented.
An example of a structureless quantum Minkowski-like spacetime is also considered.
arXiv Detail & Related papers (2019-10-24T14:54:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.