Reduce Communication Costs and Preserve Privacy: Prompt Tuning Method in
Federated Learning
- URL: http://arxiv.org/abs/2208.12268v1
- Date: Thu, 25 Aug 2022 15:27:41 GMT
- Title: Reduce Communication Costs and Preserve Privacy: Prompt Tuning Method in
Federated Learning
- Authors: Haodong Zhao, Wei Du, Fangqi Li, Peixuan Li, Gongshen Liu
- Abstract summary: Federated learning (FL) has enabled global model training on decentralized data in a privacy-preserving way.
Recent prompt tuning has achieved excellent performance as a new learning paradigm.
"FedPrompt" is the first work study prompt tuning in a model split learning way using FL.
- Score: 12.103676778867571
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated learning (FL) has enabled global model training on decentralized
data in a privacy-preserving way by aggregating model updates. However, for
many natural language processing (NLP) tasks that utilize pre-trained language
models (PLMs) with large numbers of parameters, there are considerable
communication costs associated with FL. Recently, prompt tuning, which tunes
some soft prompts without modifying PLMs, has achieved excellent performance as
a new learning paradigm. Therefore we want to combine the two methods and
explore the effect of prompt tuning under FL. In this paper, we propose
"FedPrompt" as the first work study prompt tuning in a model split learning way
using FL, and prove that split learning greatly reduces the communication cost,
only 0.01% of the PLMs' parameters, with little decrease on accuracy both on
IID and Non-IID data distribution. This improves the efficiency of FL method
while also protecting the data privacy in prompt tuning.In addition, like PLMs,
prompts are uploaded and downloaded between public platforms and personal
users, so we try to figure out whether there is still a backdoor threat using
only soft prompt in FL scenarios. We further conduct backdoor attacks by data
poisoning on FedPrompt. Our experiments show that normal backdoor attack can
not achieve a high attack success rate, proving the robustness of FedPrompt.We
hope this work can promote the application of prompt in FL and raise the
awareness of the possible security threats.
Related papers
- Save It All: Enabling Full Parameter Tuning for Federated Large Language Models via Cycle Block Gradient Descent [15.463595798992621]
Large language models (LLMs) have revolutionized the deep learning paradigm, yielding impressive results across a wide array of tasks.
Existing solutions make the unrealistic assumption that the entire model is exchanged for training.
We introduce a novel method for the efficient training and fine-tuning of LLMs in FL, with minimal resource consumption.
arXiv Detail & Related papers (2024-06-17T03:49:44Z) - Enhancing Security and Privacy in Federated Learning using Update Digests and Voting-Based Defense [23.280147155814955]
Federated Learning (FL) is a promising privacy-preserving machine learning paradigm.
Despite its potential, FL faces challenges related to the trustworthiness of both clients and servers.
We introduce a novel framework named underlinetextbfFederated underlinetextbfLearning with underlinetextbfUpdate underlinetextbfDigest (FLUD)
FLUD addresses the critical issues of privacy preservation and resistance to Byzantine attacks within distributed learning environments.
arXiv Detail & Related papers (2024-05-29T06:46:10Z) - Tunable Soft Prompts are Messengers in Federated Learning [55.924749085481544]
Federated learning (FL) enables multiple participants to collaboratively train machine learning models using decentralized data sources.
The lack of model privacy protection in FL becomes an unneglectable challenge.
We propose a novel FL training approach that accomplishes information exchange among participants via tunable soft prompts.
arXiv Detail & Related papers (2023-11-12T11:01:10Z) - Federated Learning of Large Language Models with Parameter-Efficient
Prompt Tuning and Adaptive Optimization [71.87335804334616]
Federated learning (FL) is a promising paradigm to enable collaborative model training with decentralized data.
The training process of Large Language Models (LLMs) generally incurs the update of significant parameters.
This paper proposes an efficient partial prompt tuning approach to improve performance and efficiency simultaneously.
arXiv Detail & Related papers (2023-10-23T16:37:59Z) - FedBPT: Efficient Federated Black-box Prompt Tuning for Large Language
Models [22.29061931122386]
Pre-trained language models (PLM) have revolutionized the NLP landscape, achieving stellar performances across diverse tasks.
This paper introduces Federated Black-box Prompt Tuning (FedBPT), a framework designed to address these challenges.
arXiv Detail & Related papers (2023-10-02T16:43:14Z) - When Federated Learning Meets Pre-trained Language Models'
Parameter-Efficient Tuning Methods [22.16636947999123]
We introduce various parameter-efficient tuning (PETuning) methods into federated learning.
Specifically, we provide a holistic empirical study of representative PLMs tuning methods in FL.
Overall communication overhead can be significantly reduced by locally tuning and globally aggregating lightweight model parameters.
arXiv Detail & Related papers (2022-12-20T06:44:32Z) - Acceleration of Federated Learning with Alleviated Forgetting in Local
Training [61.231021417674235]
Federated learning (FL) enables distributed optimization of machine learning models while protecting privacy.
We propose FedReg, an algorithm to accelerate FL with alleviated knowledge forgetting in the local training stage.
Our experiments demonstrate that FedReg not only significantly improves the convergence rate of FL, especially when the neural network architecture is deep.
arXiv Detail & Related papers (2022-03-05T02:31:32Z) - Do Gradient Inversion Attacks Make Federated Learning Unsafe? [70.0231254112197]
Federated learning (FL) allows the collaborative training of AI models without needing to share raw data.
Recent works on the inversion of deep neural networks from model gradients raised concerns about the security of FL in preventing the leakage of training data.
In this work, we show that these attacks presented in the literature are impractical in real FL use-cases and provide a new baseline attack.
arXiv Detail & Related papers (2022-02-14T18:33:12Z) - Federated Robustness Propagation: Sharing Adversarial Robustness in
Federated Learning [98.05061014090913]
Federated learning (FL) emerges as a popular distributed learning schema that learns from a set of participating users without requiring raw data to be shared.
adversarial training (AT) provides a sound solution for centralized learning, extending its usage for FL users has imposed significant challenges.
We show that existing FL techniques cannot effectively propagate adversarial robustness among non-iid users.
We propose a simple yet effective propagation approach that transfers robustness through carefully designed batch-normalization statistics.
arXiv Detail & Related papers (2021-06-18T15:52:33Z) - Blockchain Assisted Decentralized Federated Learning (BLADE-FL) with
Lazy Clients [124.48732110742623]
We propose a novel framework by integrating blockchain into Federated Learning (FL)
BLADE-FL has a good performance in terms of privacy preservation, tamper resistance, and effective cooperation of learning.
It gives rise to a new problem of training deficiency, caused by lazy clients who plagiarize others' trained models and add artificial noises to conceal their cheating behaviors.
arXiv Detail & Related papers (2020-12-02T12:18:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.