論文の概要: Light-weight probing of unsupervised representations for Reinforcement
Learning
- arxiv url: http://arxiv.org/abs/2208.12345v1
- Date: Thu, 25 Aug 2022 21:08:01 GMT
- ステータス: 処理完了
- システム内更新日: 2022-08-29 12:31:21.955301
- Title: Light-weight probing of unsupervised representations for Reinforcement
Learning
- Title(参考訳): 強化学習のための教師なし表現の軽量探索
- Authors: Wancong Zhang, Anthony GX-Chen, Vlad Sobal, Yann LeCun, Nicolas Carion
- Abstract要約: 分散度が低く,計算コストが最大600倍の教師なし視覚表現の評価プロトコルを提案する。
本研究では,ある状態における報酬の予測と,ある状態における専門家の行動の予測という2つの線形探索タスクを提案する。
厳密な実験により,Atari100kベンチマークの下流制御性能と強く相関していることを示す。
- 参考スコア(独自算出の注目度): 10.642105903491421
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Unsupervised visual representation learning offers the opportunity to
leverage large corpora of unlabeled trajectories to form useful visual
representations, which can benefit the training of reinforcement learning (RL)
algorithms. However, evaluating the fitness of such representations requires
training RL algorithms which is computationally intensive and has high variance
outcomes. To alleviate this issue, we design an evaluation protocol for
unsupervised RL representations with lower variance and up to 600x lower
computational cost. Inspired by the vision community, we propose two linear
probing tasks: predicting the reward observed in a given state, and predicting
the action of an expert in a given state. These two tasks are generally
applicable to many RL domains, and we show through rigorous experimentation
that they correlate strongly with the actual downstream control performance on
the Atari100k Benchmark. This provides a better method for exploring the space
of pretraining algorithms without the need of running RL evaluations for every
setting. Leveraging this framework, we further improve existing self-supervised
learning (SSL) recipes for RL, highlighting the importance of the forward
model, the size of the visual backbone, and the precise formulation of the
unsupervised objective.
- Abstract(参考訳): 教師なしの視覚表現学習は、ラベルなし軌跡の大きなコーパスを利用して有用な視覚表現を形成する機会を与え、強化学習(RL)アルゴリズムの訓練に役立てることができる。
しかし、そのような表現の適合性を評価するには、計算集約的でばらつきの高いRLアルゴリズムを訓練する必要がある。
この問題を軽減するため,教師なしRL表現の評価プロトコルを設計し,分散度を低くし,計算コストを最大600倍まで削減する。
視覚コミュニティに触発されて,与えられた状態における報酬の予測と,与えられた状態における専門家の行動の予測という2つの線形探索タスクを提案する。
これらの2つのタスクは一般に多くのRLドメインに適用でき、厳密な実験を通して、Atari100kベンチマークの下流制御性能と強く相関していることを示す。
これにより、設定毎にRL評価を実行することなく、事前学習アルゴリズムの空間を探索するより良い方法が提供される。
このフレームワークを活用することで、RLの既存の自己教師あり学習(SSL)レシピをさらに改善し、フォワードモデルの重要性、視覚バックボーンのサイズ、教師なし目的の正確な定式化を強調します。
関連論文リスト
- RLInspect: An Interactive Visual Approach to Assess Reinforcement Learning Algorithm [0.0]
強化学習(Reinforcement Learning, RL)は、機械学習の急速に成長する分野である。
RLモデルを評価することは困難であり、その振る舞いを理解するのが難しくなる。
我々はインタラクティブな視覚分析ツールであるRLInspectを開発した。
RLモデルのさまざまなコンポーネント - 状態、アクション、エージェントアーキテクチャ、報酬 - を考慮しており、RLトレーニングのより包括的なビューを提供する。
論文 参考訳(メタデータ) (2024-11-13T07:24:14Z) - DEAR: Disentangled Environment and Agent Representations for Reinforcement Learning without Reconstruction [4.813546138483559]
強化学習(RL)アルゴリズムは視覚的な観察からロボット制御タスクを学習することができるが、大量のデータを必要とすることが多い。
本稿では,その形状に関するエージェントの知識が,視覚的RL法のサンプル効率を向上させる方法について検討する。
本稿では,エージェントのセグメンテーションマスクを監督対象とする,分散環境とエージェント表現という新しい手法を提案する。
論文 参考訳(メタデータ) (2024-06-30T09:15:21Z) - Provable Reward-Agnostic Preference-Based Reinforcement Learning [61.39541986848391]
PbRL(Preference-based Reinforcement Learning)は、RLエージェントが、軌道上のペアワイドな嗜好に基づくフィードバックを用いてタスクを最適化することを学ぶパラダイムである。
本稿では,隠れた報酬関数の正確な学習を可能にする探索軌道を求める理論的報酬非依存PbRLフレームワークを提案する。
論文 参考訳(メタデータ) (2023-05-29T15:00:09Z) - Mastering the Unsupervised Reinforcement Learning Benchmark from Pixels [112.63440666617494]
強化学習アルゴリズムは成功するが、エージェントと環境の間の大量の相互作用を必要とする。
本稿では,教師なしモデルベースRLを用いてエージェントを事前学習する手法を提案する。
我々はReal-Word RLベンチマークにおいて、適応中の環境摂動に対する抵抗性を示唆し、堅牢な性能を示す。
論文 参考訳(メタデータ) (2022-09-24T14:22:29Z) - Contrastive UCB: Provably Efficient Contrastive Self-Supervised Learning in Online Reinforcement Learning [92.18524491615548]
対照的な自己指導型学習は、(深層)強化学習(RL)の実践にうまく統合されている
我々は,低ランク遷移を伴うマルコフ決定過程(MDP)とマルコフゲーム(MG)のクラスにおいて,コントラスト学習によってRLをどのように強化できるかを検討する。
オンライン環境下では,MDPやMGのオンラインRLアルゴリズムと対照的な損失を生かした,新しい高信頼境界(UCB)型アルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-07-29T17:29:08Z) - Contrastive Learning as Goal-Conditioned Reinforcement Learning [147.28638631734486]
強化学習(RL)では,優れた表現が与えられると,課題の解決が容易になる。
ディープRLはこのような優れた表現を自動的に取得する必要があるが、事前の作業では、エンドツーエンドの方法での学習表現が不安定であることが多い。
比較的)表現学習法は,RLアルゴリズムとして自己にキャスト可能であることを示す。
論文 参考訳(メタデータ) (2022-06-15T14:34:15Z) - Mask-based Latent Reconstruction for Reinforcement Learning [58.43247393611453]
マスクをベースとした遅延再構成(MLR)は,空間的および時間的マスキング画素を用いた観測から潜在空間の完全な状態表現を予測するために提案される。
広汎な実験により,MLRは深部強化学習における試料効率を著しく向上させることが示された。
論文 参考訳(メタデータ) (2022-01-28T13:07:11Z) - Exploratory State Representation Learning [63.942632088208505]
本稿では,XSRL(eXploratory State Representation Learning)と呼ばれる新しい手法を提案する。
一方、コンパクトな状態表現と、その表現から不可解な情報を除去するために使用される状態遷移推定器を共同で学習する。
一方、逆モデルを継続的に訓練し、このモデルの予測誤差に$k$-stepの学習促進ボーナスを加え、発見ポリシーの目的を形成する。
論文 参考訳(メタデータ) (2021-09-28T10:11:07Z) - Cross-Trajectory Representation Learning for Zero-Shot Generalization in
RL [21.550201956884532]
高次元の観察空間上のいくつかのタスクで学んだポリシーを、トレーニング中に見えない同様のタスクに一般化する。
この課題に対する多くの有望なアプローチは、RLを2つの関数を同時に訓練するプロセスと見なしている。
本稿では,RLエージェント内で動作するクロストラジェクトリ表現学習(CTRL, Cross-Trajectory Representation Learning)を提案する。
論文 参考訳(メタデータ) (2021-06-04T00:43:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。