論文の概要: Lib-SibGMU -- A University Library Circulation Dataset for Recommender
Systems Developmen
- arxiv url: http://arxiv.org/abs/2208.12356v1
- Date: Thu, 25 Aug 2022 22:10:18 GMT
- ステータス: 処理完了
- システム内更新日: 2022-08-29 13:17:05.521728
- Title: Lib-SibGMU -- A University Library Circulation Dataset for Recommender
Systems Developmen
- Title(参考訳): Lib-SibGMU-レコメンダシステムのための大学図書館循環データセット
- Authors: Eduard Zubchuk, Mikhail Arhipkin, Dmitry Menshikov, Aleksandr Karaush,
Nikolay Mikhaylovskiy
- Abstract要約: 大学図書館の循環データセットLib-SibGMUをオープンソースとして公開しました。
ベクタライザからなるレコメンデータアーキテクチャでは,ベクタライザとしてfastTextモデルを使用することで,ベクタライザの競合的な結果が得られることを示す。
- 参考スコア(独自算出の注目度): 58.720142291102135
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We opensource under CC BY 4.0 license Lib-SibGMU - a university library
circulation dataset - for a wide research community, and benchmark major
algorithms for recommender systems on this dataset. For a recommender
architecture that consists of a vectorizer that turns the history of the books
borrowed into a vector, and a neighborhood-based recommender, trained
separately, we show that using the fastText model as a vectorizer delivers
competitive results.
- Abstract(参考訳): CC BY 4.0ライセンスのLib-SibGMUを、幅広い研究コミュニティのためにオープンソースにし、このデータセット上で推奨システムのための主要なアルゴリズムをベンチマークします。
借本履歴をベクトルに変換するベクタライザと、別々に訓練した地区ベースのレコメンデータで構成されるレコメンダアーキテクチャでは、高速テキストモデルをベクタライザとして使用すると競合する結果が得られることを示す。
関連論文リスト
- The Faiss library [54.589857872477445]
Faissは、インデックス化手法と関連するプリミティブのツールキットで、ベクトルの検索、クラスタ化、圧縮、変換に使用される。
本稿では,ベクトル探索のトレードオフ空間とFaissの設計原理について,構造,最適化,インターフェースの観点から述べる。
論文 参考訳(メタデータ) (2024-01-16T11:12:36Z) - A Hypergraph-Based Approach to Recommend Online Resources in a Library [0.0]
本研究は,デジタル図書館の利用データを分析し,利用者に推薦する。
異なるクラスタリングアルゴリズムを使用してレコメンダシステムを設計する。
論文 参考訳(メタデータ) (2023-12-02T02:57:52Z) - Recommendation Systems in Libraries: an Application with Heterogeneous
Data Sources [66.81627042740679]
Reading&Machineプロジェクトは、デジタル化のサポートを利用して、ライブラリの魅力を高め、ユーザエクスペリエンスを向上させる。
プロジェクトでは、ユーザが意思決定プロセスにおいて、ユーザが興味を持つであろう書籍のリストをレコメンデーションシステム(RecSys)で作成するアプリケーションを実装している。
論文 参考訳(メタデータ) (2023-03-21T11:13:01Z) - Code Librarian: A Software Package Recommendation System [65.05559087332347]
オープンソースライブラリ用のリコメンデーションエンジンであるLibrarianを提示する。
1)プログラムのインポートライブラリで頻繁に使用されること、2)プログラムのインポートライブラリと似た機能を持つこと、3)開発者の実装と似た機能を持つこと、4)提供されるコードのコンテキストで効率的に使用できること、である。
論文 参考訳(メタデータ) (2022-10-11T12:30:05Z) - Learning Cluster Patterns for Abstractive Summarization [0.0]
そこで我々は,デコーダがより有意な文脈ベクトルに参加できるような,有意なコンテキストベクトルと非有意なコンテキストベクトルの2つのクラスタについて考察する。
実験結果から,提案モデルは,これらの異なるクラスタパターンを学習することにより,既存のBARTモデルよりも優れた性能を示すことが示された。
論文 参考訳(メタデータ) (2022-02-22T15:15:24Z) - CSSR: A Context-Aware Sequential Software Service Recommendation Model [4.306391411024746]
ユーザが適切なリポジトリをGitHubで見つけるのに役立つ新しいソフトウェアサービスレコメンデーションモデルを提案する。
我々のモデルはまず,リポジトリのリッチなコンテキスト情報を活用するために,新しいコンテキスト依存のリポジトリグラフ埋め込み法を設計する。
そして、ソフトウェアサービスレコメンデーション分野において、初めてユーザー-リポジトリ間のインタラクションのシーケンス情報を活用する。
論文 参考訳(メタデータ) (2021-12-20T03:17:42Z) - GRecX: An Efficient and Unified Benchmark for GNN-based Recommendation [55.55523188090938]
我々はGNNベースのレコメンデーションモデルのベンチマークを行うためのオープンソースのフレームワークであるGRecXを紹介する。
GRecXは、GNNベースのレコメンデーションベンチマークを構築するためのコアライブラリと、人気のあるGNNベースのレコメンデーションモデルの実装で構成されている。
我々はGRecXを用いて実験を行い、実験の結果、GRecXはGNNベースの推薦基準を効率的かつ統一的にトレーニングし、ベンチマークすることができることを示した。
論文 参考訳(メタデータ) (2021-11-19T17:45:46Z) - Picasso: A Sparse Learning Library for High Dimensional Data Analysis in
R and Python [77.33905890197269]
本稿では,様々なスパース学習問題に対して,経路座標を統一的に最適化する新しいライブラリについて述べる。
ライブラリはR++でコード化されており、ユーザフレンドリーなスパース実験を行っている。
論文 参考訳(メタデータ) (2020-06-27T02:39:24Z) - Req2Lib: A Semantic Neural Model for Software Library Recommendation [8.713783358744166]
我々はReq2Libと呼ばれる新しいニューラルアプローチを提案し、プロジェクトの要件を記述したライブラリを推奨する。
本研究では,自然言語における要求記述の関連情報と意味情報の学習にシーケンス・ツー・シーケンスモデルを用いる。
我々の予備評価は、Req2Libがライブラリを正確に推奨できることを示しています。
論文 参考訳(メタデータ) (2020-05-24T14:37:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。