論文の概要: Learning energy-efficient driving behaviors by imitating experts
- arxiv url: http://arxiv.org/abs/2208.12534v1
- Date: Tue, 28 Jun 2022 17:08:31 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-07 09:56:32.573140
- Title: Learning energy-efficient driving behaviors by imitating experts
- Title(参考訳): 専門家の模倣によるエネルギー効率の高い運転行動の学習
- Authors: Abdul Rahman Kreidieh, Zhe Fu and Alexandre M. Bayen
- Abstract要約: 本稿では,コミュニケーション・センシングにおける制御戦略と現実的限界のギャップを埋める上で,模倣学習が果たす役割について考察する。
擬似学習は、車両の5%に採用されれば、局地的な観測のみを用いて、交通条件の異なるネットワークのエネルギー効率を15%向上させる政策を導出できることを示す。
- 参考スコア(独自算出の注目度): 75.12960180185105
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The rise of vehicle automation has generated significant interest in the
potential role of future automated vehicles (AVs). In particular, in highly
dense traffic settings, AVs are expected to serve as congestion-dampeners,
mitigating the presence of instabilities that arise from various sources.
However, in many applications, such maneuvers rely heavily on non-local sensing
or coordination by interacting AVs, thereby rendering their adaptation to
real-world settings a particularly difficult challenge. To address this
challenge, this paper examines the role of imitation learning in bridging the
gap between such control strategies and realistic limitations in communication
and sensing. Treating one such controller as an "expert", we demonstrate that
imitation learning can succeed in deriving policies that, if adopted by 5% of
vehicles, may boost the energy-efficiency of networks with varying traffic
conditions by 15% using only local observations. Results and code are available
online at https://sites.google.com/view/il-traffic/home.
- Abstract(参考訳): 自動車自動化の台頭は、将来の自動走行車(AV)の潜在的な役割に大きな関心を呼んだ。
特に,高度に密集した交通条件下では,AVが渋滞防止剤として機能し,様々な原因から生じる不安定性の存在を緩和することが期待されている。
しかし、多くのアプリケーションでは、こうした操作は非局所的なセンシングやAVの相互作用による調整に大きく依存しているため、現実の環境への適応は特に難しい課題である。
本稿では,このような制御戦略とコミュニケーションとセンシングにおける現実的な制限との橋渡しにおいて,模倣学習が果たす役割について考察する。
このようなコントローラを「専門家」として扱うことで、車両の5%に採用されれば、局地的な観測のみを用いて、交通条件の異なるネットワークのエネルギー効率を15%向上できるような、模倣学習が成功することを示す。
結果とコードはhttps://sites.google.com/view/il-traffic/homeで入手できる。
関連論文リスト
- Work-in-Progress: Crash Course: Can (Under Attack) Autonomous Driving Beat Human Drivers? [60.51287814584477]
本稿では,現在のAVの状況を調べることによって,自律運転における本質的なリスクを評価する。
AVの利点と、現実のシナリオにおける潜在的なセキュリティ課題との微妙なバランスを強調した、特定のクレームを開発する。
論文 参考訳(メタデータ) (2024-05-14T09:42:21Z) - Agent-Agnostic Centralized Training for Decentralized Multi-Agent Cooperative Driving [17.659812774579756]
本研究では,自律走行車における分散型協調運転ポリシーを学習する非対称アクター・批判モデルを提案する。
マスキングを用いたアテンションニューラルネットワークを用いることで,実世界の交通動態と部分観測可能性の効率よく管理できる。
論文 参考訳(メタデータ) (2024-03-18T16:13:02Z) - Analyze Drivers' Intervention Behavior During Autonomous Driving -- A
VR-incorporated Approach [2.7532019227694344]
この研究は、自動運転車の運転に関わる人間のドライバーの介入行動を理解することに光を当てている。
仮想リアリティ(VR)と交通マイクロシミュレーションを統合する実験環境が実装された。
介入の確率、事故率などのパフォーマンス指標が定義され、リスクレベルを定量化し比較するために使用される。
論文 参考訳(メタデータ) (2023-12-04T06:36:57Z) - Unified Automatic Control of Vehicular Systems with Reinforcement
Learning [64.63619662693068]
本稿では,車載マイクロシミュレーションの合理化手法について述べる。
最小限の手動設計で高性能な制御戦略を発見する。
この研究は、波動緩和、交通信号、ランプ計測に類似した多くの創発的挙動を明らかにしている。
論文 参考訳(メタデータ) (2022-07-30T16:23:45Z) - COOPERNAUT: End-to-End Driving with Cooperative Perception for Networked
Vehicles [54.61668577827041]
本稿では,車間認識を用いたエンドツーエンド学習モデルであるCOOPERNAUTを紹介する。
われわれのAutoCastSim実験は、我々の協調知覚駆動モデルが平均成功率を40%向上させることを示唆している。
論文 参考訳(メタデータ) (2022-05-04T17:55:12Z) - Transferable and Adaptable Driving Behavior Prediction [34.606012573285554]
本研究では,運転行動に対して高品質で伝達可能で適応可能な予測を生成する階層型フレームワークであるHATNを提案する。
我々は,交差点における実交通データの軌跡予測と,インターActionデータセットからのラウンドアバウンドのタスクにおいて,我々のアルゴリズムを実証する。
論文 参考訳(メタデータ) (2022-02-10T16:46:24Z) - DQ-GAT: Towards Safe and Efficient Autonomous Driving with Deep
Q-Learning and Graph Attention Networks [12.714551756377265]
従来の計画手法は概ねルールベースであり、複雑な動的シナリオではスケールが不十分である。
スケーラブルでプロアクティブな自動運転を実現するためにDQ-GATを提案する。
我々の手法は、見知らぬシナリオと見えないシナリオの両方において、安全と効率のトレードオフを改善することができる。
論文 参考訳(メタデータ) (2021-08-11T04:55:23Z) - Transferable Deep Reinforcement Learning Framework for Autonomous
Vehicles with Joint Radar-Data Communications [69.24726496448713]
本稿では,AVの最適決定を支援するために,マルコフ決定プロセス(MDP)に基づくインテリジェントな最適化フレームワークを提案する。
そこで我々は,近年の深層強化学習技術を活用した効果的な学習アルゴリズムを開発し,AVの最適方針を見出す。
提案手法は,従来の深部強化学習手法と比較して,AVによる障害物ミス検出確率を最大67%削減することを示す。
論文 参考訳(メタデータ) (2021-05-28T08:45:37Z) - Multi-Modal Fusion Transformer for End-to-End Autonomous Driving [59.60483620730437]
画像表現とLiDAR表現を注目で統合する,新しいマルチモードフュージョントランスフォーマであるTransFuserを提案する。
本手法は, 衝突を76%低減しつつ, 最先端駆動性能を実現する。
論文 参考訳(メタデータ) (2021-04-19T11:48:13Z) - Deep Surrogate Q-Learning for Autonomous Driving [17.30342128504405]
本稿では,自律運転における車線変更行動学習のためのSurrogate Q-learningを提案する。
このアーキテクチャは、Scene-centric Experience Replayと呼ばれる新しいリプレイサンプリング技術に繋がることを示す。
また,本手法は実高Dデータセット上のポリシーを学習することで,実世界のRLシステムの適用性を向上させる。
論文 参考訳(メタデータ) (2020-10-21T19:49:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。