Learning energy-efficient driving behaviors by imitating experts
- URL: http://arxiv.org/abs/2208.12534v1
- Date: Tue, 28 Jun 2022 17:08:31 GMT
- Title: Learning energy-efficient driving behaviors by imitating experts
- Authors: Abdul Rahman Kreidieh, Zhe Fu and Alexandre M. Bayen
- Abstract summary: This paper examines the role of imitation learning in bridging the gap between control strategies and realistic limitations in communication and sensing.
We show that imitation learning can succeed in deriving policies that, if adopted by 5% of vehicles, may boost the energy-efficiency of networks with varying traffic conditions by 15% using only local observations.
- Score: 75.12960180185105
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The rise of vehicle automation has generated significant interest in the
potential role of future automated vehicles (AVs). In particular, in highly
dense traffic settings, AVs are expected to serve as congestion-dampeners,
mitigating the presence of instabilities that arise from various sources.
However, in many applications, such maneuvers rely heavily on non-local sensing
or coordination by interacting AVs, thereby rendering their adaptation to
real-world settings a particularly difficult challenge. To address this
challenge, this paper examines the role of imitation learning in bridging the
gap between such control strategies and realistic limitations in communication
and sensing. Treating one such controller as an "expert", we demonstrate that
imitation learning can succeed in deriving policies that, if adopted by 5% of
vehicles, may boost the energy-efficiency of networks with varying traffic
conditions by 15% using only local observations. Results and code are available
online at https://sites.google.com/view/il-traffic/home.
Related papers
- Work-in-Progress: Crash Course: Can (Under Attack) Autonomous Driving Beat Human Drivers? [60.51287814584477]
This paper evaluates the inherent risks in autonomous driving by examining the current landscape of AVs.
We develop specific claims highlighting the delicate balance between the advantages of AVs and potential security challenges in real-world scenarios.
arXiv Detail & Related papers (2024-05-14T09:42:21Z) - Agent-Agnostic Centralized Training for Decentralized Multi-Agent Cooperative Driving [17.659812774579756]
We propose an asymmetric actor-critic model that learns decentralized cooperative driving policies for autonomous vehicles.
By employing attention neural networks with masking, our approach efficiently manages real-world traffic dynamics and partial observability.
arXiv Detail & Related papers (2024-03-18T16:13:02Z) - Analyze Drivers' Intervention Behavior During Autonomous Driving -- A
VR-incorporated Approach [2.7532019227694344]
This work sheds light on understanding human drivers' intervention behavior involved in the operation of autonomous vehicles.
Experiment environments were implemented where the virtual reality (VR) and traffic micro-simulation are integrated.
Performance indicators such as the probability of intervention, accident rates are defined and used to quantify and compare the risk levels.
arXiv Detail & Related papers (2023-12-04T06:36:57Z) - Unified Automatic Control of Vehicular Systems with Reinforcement
Learning [64.63619662693068]
This article contributes a streamlined methodology for vehicular microsimulation.
It discovers high performance control strategies with minimal manual design.
The study reveals numerous emergent behaviors resembling wave mitigation, traffic signaling, and ramp metering.
arXiv Detail & Related papers (2022-07-30T16:23:45Z) - COOPERNAUT: End-to-End Driving with Cooperative Perception for Networked
Vehicles [54.61668577827041]
We introduce COOPERNAUT, an end-to-end learning model that uses cross-vehicle perception for vision-based cooperative driving.
Our experiments on AutoCastSim suggest that our cooperative perception driving models lead to a 40% improvement in average success rate.
arXiv Detail & Related papers (2022-05-04T17:55:12Z) - Transferable and Adaptable Driving Behavior Prediction [34.606012573285554]
We propose HATN, a hierarchical framework to generate high-quality, transferable, and adaptable predictions for driving behaviors.
We demonstrate our algorithms in the task of trajectory prediction for real traffic data at intersections and roundabouts from the INTERACTION dataset.
arXiv Detail & Related papers (2022-02-10T16:46:24Z) - DQ-GAT: Towards Safe and Efficient Autonomous Driving with Deep
Q-Learning and Graph Attention Networks [12.714551756377265]
Traditional planning methods are largely rule-based and scale poorly in complex dynamic scenarios.
We propose DQ-GAT to achieve scalable and proactive autonomous driving.
Our method can better trade-off safety and efficiency in both seen and unseen scenarios.
arXiv Detail & Related papers (2021-08-11T04:55:23Z) - Transferable Deep Reinforcement Learning Framework for Autonomous
Vehicles with Joint Radar-Data Communications [69.24726496448713]
We propose an intelligent optimization framework based on the Markov Decision Process (MDP) to help the AV make optimal decisions.
We then develop an effective learning algorithm leveraging recent advances of deep reinforcement learning techniques to find the optimal policy for the AV.
We show that the proposed transferable deep reinforcement learning framework reduces the obstacle miss detection probability by the AV up to 67% compared to other conventional deep reinforcement learning approaches.
arXiv Detail & Related papers (2021-05-28T08:45:37Z) - Multi-Modal Fusion Transformer for End-to-End Autonomous Driving [59.60483620730437]
We propose TransFuser, a novel Multi-Modal Fusion Transformer, to integrate image and LiDAR representations using attention.
Our approach achieves state-of-the-art driving performance while reducing collisions by 76% compared to geometry-based fusion.
arXiv Detail & Related papers (2021-04-19T11:48:13Z) - Deep Surrogate Q-Learning for Autonomous Driving [17.30342128504405]
We propose Surrogate Q-learning for learning lane-change behavior for autonomous driving.
We show that the architecture leads to a novel replay sampling technique we call Scene-centric Experience Replay.
We also show that our methods enhance real-world applicability of RL systems by learning policies on the real highD dataset.
arXiv Detail & Related papers (2020-10-21T19:49:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.