MORI-RAN: Multi-view Robust Representation Learning via Hybrid
Contrastive Fusion
- URL: http://arxiv.org/abs/2208.12545v2
- Date: Tue, 30 Aug 2022 08:54:35 GMT
- Title: MORI-RAN: Multi-view Robust Representation Learning via Hybrid
Contrastive Fusion
- Authors: Guanzhou Ke, Yongqi Zhu, Yang Yu
- Abstract summary: Multi-view representation learning is essential for many multi-view tasks, such as clustering and classification.
We propose a hybrid contrastive fusion algorithm to extract robust view-common representation from unlabeled data.
Experimental results demonstrated that the proposed method outperforms 12 competitive multi-view methods on four real-world datasets.
- Score: 4.36488705757229
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Multi-view representation learning is essential for many multi-view tasks,
such as clustering and classification. However, there are two challenging
problems plaguing the community: i)how to learn robust multi-view
representation from mass unlabeled data and ii) how to balance the view
consistency and the view specificity. To this end, in this paper, we proposed a
hybrid contrastive fusion algorithm to extract robust view-common
representation from unlabeled data. Specifically, we found that introducing an
additional representation space and aligning representations on this space
enables the model to learn robust view-common representations. At the same
time, we designed an asymmetric contrastive strategy to ensure that the model
does not obtain trivial solutions. Experimental results demonstrated that the
proposed method outperforms 12 competitive multi-view methods on four
real-world datasets in terms of clustering and classification. Our source code
will be available soon at \url{https://github.com/guanzhou-ke/mori-ran}.
Related papers
- Incomplete Contrastive Multi-View Clustering with High-Confidence
Guiding [7.305817202715752]
We propose a novel Incomplete Contrastive Multi-View Clustering method with high-confidence guiding (ICMVC)
Firstly, we proposed a multi-view consistency relation transfer plus graph convolutional network to tackle missing values problem.
Secondly, instance-level attention fusion and high-confidence guiding are proposed to exploit the complementary information.
arXiv Detail & Related papers (2023-12-14T07:28:41Z) - Hierarchical Mutual Information Analysis: Towards Multi-view Clustering
in The Wild [9.380271109354474]
This work proposes a deep MVC framework where data recovery and alignment are fused in a hierarchically consistent way to maximize the mutual information among different views.
To the best of our knowledge, this could be the first successful attempt to handle the missing and unaligned data problem separately with different learning paradigms.
arXiv Detail & Related papers (2023-10-28T06:43:57Z) - DealMVC: Dual Contrastive Calibration for Multi-view Clustering [78.54355167448614]
We propose a novel Dual contrastive calibration network for Multi-View Clustering (DealMVC)
We first design a fusion mechanism to obtain a global cross-view feature. Then, a global contrastive calibration loss is proposed by aligning the view feature similarity graph and the high-confidence pseudo-label graph.
During the training procedure, the interacted cross-view feature is jointly optimized at both local and global levels.
arXiv Detail & Related papers (2023-08-17T14:14:28Z) - Deep Incomplete Multi-view Clustering with Cross-view Partial Sample and
Prototype Alignment [50.82982601256481]
We propose a Cross-view Partial Sample and Prototype Alignment Network (CPSPAN) for Deep Incomplete Multi-view Clustering.
Unlike existing contrastive-based methods, we adopt pair-observed data alignment as 'proxy supervised signals' to guide instance-to-instance correspondence construction.
arXiv Detail & Related papers (2023-03-28T02:31:57Z) - A Clustering-guided Contrastive Fusion for Multi-view Representation
Learning [7.630965478083513]
We propose a deep fusion network to fuse view-specific representations into the view-common representation.
We also design an asymmetrical contrastive strategy that aligns the view-common representation and each view-specific representation.
In the incomplete view scenario, our proposed method resists noise interference better than those of our competitors.
arXiv Detail & Related papers (2022-12-28T07:21:05Z) - Cross-view Graph Contrastive Representation Learning on Partially
Aligned Multi-view Data [52.491074276133325]
Multi-view representation learning has developed rapidly over the past decades and has been applied in many fields.
We propose a new cross-view graph contrastive learning framework, which integrates multi-view information to align data and learn latent representations.
Experiments conducted on several real datasets demonstrate the effectiveness of the proposed method on the clustering and classification tasks.
arXiv Detail & Related papers (2022-11-08T09:19:32Z) - Adaptively-weighted Integral Space for Fast Multiview Clustering [54.177846260063966]
We propose an Adaptively-weighted Integral Space for Fast Multiview Clustering (AIMC) with nearly linear complexity.
Specifically, view generation models are designed to reconstruct the view observations from the latent integral space.
Experiments conducted on several realworld datasets confirm the superiority of the proposed AIMC method.
arXiv Detail & Related papers (2022-08-25T05:47:39Z) - Unsupervised Multi-view Clustering by Squeezing Hybrid Knowledge from
Cross View and Each View [68.88732535086338]
This paper proposes a new multi-view clustering method, low-rank subspace multi-view clustering based on adaptive graph regularization.
Experimental results for five widely used multi-view benchmarks show that our proposed algorithm surpasses other state-of-the-art methods by a clear margin.
arXiv Detail & Related papers (2020-08-23T08:25:06Z) - Multi-view Low-rank Preserving Embedding: A Novel Method for Multi-view
Representation [11.91574721055601]
This paper proposes a novel multi-view learning method, named Multi-view Low-rank Preserving Embedding (MvLPE)
It integrates different views into one centroid view by minimizing the disagreement term, based on distance or similarity matrix among instances.
Experiments on six benchmark datasets demonstrate that the proposed method outperforms its counterparts.
arXiv Detail & Related papers (2020-06-14T12:47:25Z) - Generative Partial Multi-View Clustering [133.36721417531734]
We propose a generative partial multi-view clustering model, named as GP-MVC, to address the incomplete multi-view problem.
First, multi-view encoder networks are trained to learn common low-dimensional representations, followed by a clustering layer to capture the consistent cluster structure across multiple views.
Second, view-specific generative adversarial networks are developed to generate the missing data of one view conditioning on the shared representation given by other views.
arXiv Detail & Related papers (2020-03-29T17:48:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.