Unsupervised Multi-view Clustering by Squeezing Hybrid Knowledge from
Cross View and Each View
- URL: http://arxiv.org/abs/2008.09990v1
- Date: Sun, 23 Aug 2020 08:25:06 GMT
- Title: Unsupervised Multi-view Clustering by Squeezing Hybrid Knowledge from
Cross View and Each View
- Authors: Junpeng Tan, Yukai Shi, Zhijing Yang, Caizhen Wen, Liang Lin
- Abstract summary: This paper proposes a new multi-view clustering method, low-rank subspace multi-view clustering based on adaptive graph regularization.
Experimental results for five widely used multi-view benchmarks show that our proposed algorithm surpasses other state-of-the-art methods by a clear margin.
- Score: 68.88732535086338
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Multi-view clustering methods have been a focus in recent years because of
their superiority in clustering performance. However, typical traditional
multi-view clustering algorithms still have shortcomings in some aspects, such
as removal of redundant information, utilization of various views and fusion of
multi-view features. In view of these problems, this paper proposes a new
multi-view clustering method, low-rank subspace multi-view clustering based on
adaptive graph regularization. We construct two new data matrix decomposition
models into a unified optimization model. In this framework, we address the
significance of the common knowledge shared by the cross view and the unique
knowledge of each view by presenting new low-rank and sparse constraints on the
sparse subspace matrix. To ensure that we achieve effective sparse
representation and clustering performance on the original data matrix, adaptive
graph regularization and unsupervised clustering constraints are also
incorporated in the proposed model to preserve the internal structural features
of the data. Finally, the proposed method is compared with several
state-of-the-art algorithms. Experimental results for five widely used
multi-view benchmarks show that our proposed algorithm surpasses other
state-of-the-art methods by a clear margin.
Related papers
- A Novel Approach for Effective Multi-View Clustering with
Information-Theoretic Perspective [24.630259061774836]
This study presents a new approach called Sufficient Multi-View Clustering (SUMVC) that examines the multi-view clustering framework from an information-theoretic standpoint.
Firstly, we develop a simple and reliable multi-view clustering method SCMVC that employs variational analysis to generate consistent information.
Secondly, we propose a sufficient representation lower bound to enhance consistent information and minimise unnecessary information among views.
arXiv Detail & Related papers (2023-09-25T09:41:11Z) - One-step Multi-view Clustering with Diverse Representation [47.41455937479201]
We propose a one-step multi-view clustering with diverse representation method, which incorporates multi-view learning and $k$-means into a unified framework.
We develop an efficient optimization algorithm with proven convergence to solve the resultant problem.
arXiv Detail & Related papers (2023-06-08T02:52:24Z) - Multi-View Clustering via Semi-non-negative Tensor Factorization [120.87318230985653]
We develop a novel multi-view clustering based on semi-non-negative tensor factorization (Semi-NTF)
Our model directly considers the between-view relationship and exploits the between-view complementary information.
In addition, we provide an optimization algorithm for the proposed method and prove mathematically that the algorithm always converges to the stationary KKT point.
arXiv Detail & Related papers (2023-03-29T14:54:19Z) - Unified Multi-View Orthonormal Non-Negative Graph Based Clustering
Framework [74.25493157757943]
We formulate a novel clustering model, which exploits the non-negative feature property and incorporates the multi-view information into a unified joint learning framework.
We also explore, for the first time, the multi-model non-negative graph-based approach to clustering data based on deep features.
arXiv Detail & Related papers (2022-11-03T08:18:27Z) - Adaptively-weighted Integral Space for Fast Multiview Clustering [54.177846260063966]
We propose an Adaptively-weighted Integral Space for Fast Multiview Clustering (AIMC) with nearly linear complexity.
Specifically, view generation models are designed to reconstruct the view observations from the latent integral space.
Experiments conducted on several realworld datasets confirm the superiority of the proposed AIMC method.
arXiv Detail & Related papers (2022-08-25T05:47:39Z) - Multi-view Clustering with Deep Matrix Factorization and Global Graph
Refinement [37.34296330445708]
Multi-view clustering is an important yet challenging task in machine learning and data mining.
We propose a novel Multi-View Clustering method with Deep semi-NMF and Global Graph Refinement (MVC-DMF-GGR) in this paper.
arXiv Detail & Related papers (2021-05-01T13:40:20Z) - Discriminatively Constrained Semi-supervised Multi-view Nonnegative
Matrix Factorization with Graph Regularization [10.978930376656423]
We propose a novel Discriminatively Constrained Semi-Supervised Multi-View Nonnegative Matrix Factorization (DCS2MVNMF)
Specifically, a discriminative weighting matrix is introduced for the auxiliary matrix of each view, which enhances the inter-class distinction.
In addition, we design a new feature scale normalization strategy to align the multiple views and complete the corresponding iterative optimization schemes.
arXiv Detail & Related papers (2020-10-26T02:58:11Z) - Generative Partial Multi-View Clustering [133.36721417531734]
We propose a generative partial multi-view clustering model, named as GP-MVC, to address the incomplete multi-view problem.
First, multi-view encoder networks are trained to learn common low-dimensional representations, followed by a clustering layer to capture the consistent cluster structure across multiple views.
Second, view-specific generative adversarial networks are developed to generate the missing data of one view conditioning on the shared representation given by other views.
arXiv Detail & Related papers (2020-03-29T17:48:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.