A machine learning approach to predict the structural and magnetic
properties of Heusler alloy families
- URL: http://arxiv.org/abs/2208.12705v1
- Date: Sun, 7 Aug 2022 20:46:57 GMT
- Title: A machine learning approach to predict the structural and magnetic
properties of Heusler alloy families
- Authors: Srimanta Mitra, Aquil Ahmad, Sajib Biswas and Amal Kumar Das
- Abstract summary: Random forest (RF) regression model is used to predict the lattice constant, magnetic moment and formation energies of full Heusler alloys.
The parity plots between the machine learning predicted values against the computed values using density functional theory (DFT) shows linear behavior with adjusted R2 values lying in the range of 0.80 to 0.94.
Case studies with one full Heusler alloy and one quaternary Heusler alloy were also mentioned comparing the machine learning predicted results with our earlier theoretical calculated values.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Random forest (RF) regression model is used to predict the lattice constant,
magnetic moment and formation energies of full Heusler alloys, half Heusler
alloys, inverse Heusler alloys and quaternary Heusler alloys based on existing
as well as indigenously prepared databases. Prior analysis was carried out to
check the distribution of the data points of the response variables and found
that in most of the cases, the data is not normally distributed. The outcome of
the RF model performance is sufficiently accurate to predict the response
variables on the test data and also shows its robustness against overfitting,
outliers, multicollinearity and distribution of data points. The parity plots
between the machine learning predicted values against the computed values using
density functional theory (DFT) shows linear behavior with adjusted R2 values
lying in the range of 0.80 to 0.94 for all the predicted properties for
different types of Heusler alloys. Feature importance analysis shows that the
valence electron numbers plays an important feature role in the prediction for
most of the predicted outcomes. Case studies with one full Heusler alloy and
one quaternary Heusler alloy were also mentioned comparing the machine learning
predicted results with our earlier theoretical calculated values and
experimentally measured results, suggesting high accuracy of the model
predicted results.
Related papers
- Structured Radial Basis Function Network: Modelling Diversity for
Multiple Hypotheses Prediction [51.82628081279621]
Multi-modal regression is important in forecasting nonstationary processes or with a complex mixture of distributions.
A Structured Radial Basis Function Network is presented as an ensemble of multiple hypotheses predictors for regression problems.
It is proved that this structured model can efficiently interpolate this tessellation and approximate the multiple hypotheses target distribution.
arXiv Detail & Related papers (2023-09-02T01:27:53Z) - Accurate machine learning force fields via experimental and simulation
data fusion [0.0]
Machine Learning (ML)-based force fields are attracting ever-increasing interest due to their capacity to span scales of classical interatomic potentials at quantum-level accuracy.
Here we leverage both Density Functional Theory (DFT) calculations and experimentally measured mechanical properties and lattice parameters to train an ML potential of titanium.
We demonstrate that the fused data learning strategy can concurrently satisfy all target objectives, thus resulting in a molecular model of higher accuracy compared to the models trained with a single source data.
arXiv Detail & Related papers (2023-08-17T18:22:19Z) - Confidence and Dispersity Speak: Characterising Prediction Matrix for
Unsupervised Accuracy Estimation [51.809741427975105]
This work aims to assess how well a model performs under distribution shifts without using labels.
We use the nuclear norm that has been shown to be effective in characterizing both properties.
We show that the nuclear norm is more accurate and robust in accuracy than existing methods.
arXiv Detail & Related papers (2023-02-02T13:30:48Z) - Machine-Learning Prediction of the Computed Band Gaps of Double
Perovskite Materials [3.2798940914359056]
Prediction of the electronic structure of functional materials is essential for the engineering of new devices.
In this study, we use machine learning to predict the electronic structure of double perovskite materials.
Our results are significant in the sense that they attest to the potential of machine learning regressions for the rapid screening of promising candidate functional materials.
arXiv Detail & Related papers (2023-01-04T08:19:18Z) - On the Strong Correlation Between Model Invariance and Generalization [54.812786542023325]
Generalization captures a model's ability to classify unseen data.
Invariance measures consistency of model predictions on transformations of the data.
From a dataset-centric view, we find a certain model's accuracy and invariance linearly correlated on different test sets.
arXiv Detail & Related papers (2022-07-14T17:08:25Z) - Uncertainty quantification for predictions of atomistic neural networks [0.0]
This paper explores the value of uncertainty quantification on predictions for trained neural networks (NNs) on quantum chemical reference data.
The architecture of the PhysNet NN was suitably modified and the resulting model was evaluated with different metrics to quantify calibration, quality of predictions, and whether prediction error and the predicted uncertainty can be correlated.
arXiv Detail & Related papers (2022-07-14T13:39:43Z) - TACTiS: Transformer-Attentional Copulas for Time Series [76.71406465526454]
estimation of time-varying quantities is a fundamental component of decision making in fields such as healthcare and finance.
We propose a versatile method that estimates joint distributions using an attention-based decoder.
We show that our model produces state-of-the-art predictions on several real-world datasets.
arXiv Detail & Related papers (2022-02-07T21:37:29Z) - Optimal regularizations for data generation with probabilistic graphical
models [0.0]
Empirically, well-chosen regularization schemes dramatically improve the quality of the inferred models.
We consider the particular case of L 2 and L 1 regularizations in the Maximum A Posteriori (MAP) inference of generative pairwise graphical models.
arXiv Detail & Related papers (2021-12-02T14:45:16Z) - Trustworthy Multimodal Regression with Mixture of Normal-inverse Gamma
Distributions [91.63716984911278]
We introduce a novel Mixture of Normal-Inverse Gamma distributions (MoNIG) algorithm, which efficiently estimates uncertainty in principle for adaptive integration of different modalities and produces a trustworthy regression result.
Experimental results on both synthetic and different real-world data demonstrate the effectiveness and trustworthiness of our method on various multimodal regression tasks.
arXiv Detail & Related papers (2021-11-11T14:28:12Z) - Balance-Subsampled Stable Prediction [55.13512328954456]
We propose a novel balance-subsampled stable prediction (BSSP) algorithm based on the theory of fractional factorial design.
A design-theoretic analysis shows that the proposed method can reduce the confounding effects among predictors induced by the distribution shift.
Numerical experiments on both synthetic and real-world data sets demonstrate that our BSSP algorithm significantly outperforms the baseline methods for stable prediction across unknown test data.
arXiv Detail & Related papers (2020-06-08T07:01:38Z) - Stable Prediction with Model Misspecification and Agnostic Distribution
Shift [41.26323389341987]
In machine learning algorithms, two main assumptions are required to guarantee performance.
One is that the test data are drawn from the same distribution as the training data, and the other is that the model is correctly specified.
Under model misspecification, distribution shift between training and test data leads to inaccuracy of parameter estimation and instability of prediction across unknown test data.
We propose a novel Decorrelated Weighting Regression (DWR) algorithm which jointly optimize a variable decorrelation regularizer and a weighted regression model.
arXiv Detail & Related papers (2020-01-31T08:56:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.