Minute ventilation measurement using Plethysmographic Imaging and
lighting parameters
- URL: http://arxiv.org/abs/2208.13319v1
- Date: Mon, 29 Aug 2022 00:42:48 GMT
- Title: Minute ventilation measurement using Plethysmographic Imaging and
lighting parameters
- Authors: Daniel Minati, Ludwik Sams, Karen Li, Bo Ji and Krishna Vardhan
- Abstract summary: Breathing disorders such as sleep apnea is a critical disorder that affects a large number of individuals due to the insufficient capacity of the lungs to contain/exchange oxygen and carbon dioxide to ensure that the body is in the stable state of homeostasis.
Respiratory Measurements such as minute ventilation can be used in correlation with other physiological measurements such as heart rate and heart rate variability for remote monitoring of health and detecting symptoms of such breathing related disorders.
- Score: 8.739176372427842
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Breathing disorders such as sleep apnea is a critical disorder that affects a
large number of individuals due to the insufficient capacity of the lungs to
contain/exchange oxygen and carbon dioxide to ensure that the body is in the
stable state of homeostasis. Respiratory Measurements such as minute
ventilation can be used in correlation with other physiological measurements
such as heart rate and heart rate variability for remote monitoring of health
and detecting symptoms of such breathing related disorders. In this work, we
formulate a deep learning based approach to measure remote ventilation on a
private dataset. The dataset will be made public upon acceptance of this work.
We use two versions of a deep neural network to estimate the minute ventilation
from data streams obtained through wearable heart rate and respiratory devices.
We demonstrate that the simple design of our pipeline - which includes
lightweight deep neural networks - can be easily incorporate into real time
health monitoring systems.
Related papers
- Machine learning-based algorithms for at-home respiratory disease monitoring and respiratory assessment [45.104212062055424]
This work aims to develop machine learning-based algorithms to facilitate at-home respiratory disease monitoring and assessment.
Data were collected from 30 healthy adults, encompassing respiratory pressure, flow, and dynamic thoraco-abdominal circumferential measurements.
Various machine learning models, including the random forest classifier, logistic regression, and support vector machine (SVM), were trained to predict breathing types.
arXiv Detail & Related papers (2024-09-05T02:14:31Z) - Pre-Trained Foundation Model representations to uncover Breathing patterns in Speech [2.935056044470713]
Respiratory rate (RR) is a vital metric that is used to assess the overall health, fitness, and general well-being of an individual.
Existing approaches to measure RR are performed using specialized equipment or training.
Studies have demonstrated that machine learning algorithms can be used to estimate RR using bio-sensor signals as input.
arXiv Detail & Related papers (2024-07-17T21:57:18Z) - Using BOLD-fMRI to Compute the Respiration Volume per Time (RTV) and
Respiration Variation (RV) with Convolutional Neural Networks (CNN) in the
Human Connectome Development Cohort [55.41644538483948]
This study proposes a one-dimensional CNN model for reconstruction of two respiratory measures, RV and RVT.
Results show that a CNN can capture informative features from resting BOLD signals and reconstruct realistic RV and RVT timeseries.
arXiv Detail & Related papers (2023-07-03T18:06:36Z) - Validated respiratory drug deposition predictions from 2D and 3D medical
images with statistical shape models and convolutional neural networks [47.187609203210705]
We aim to develop and validate an automated computational framework for patient-specific deposition modelling.
An image processing approach is proposed that could produce 3D patient respiratory geometries from 2D chest X-rays and 3D CT images.
arXiv Detail & Related papers (2023-03-02T07:47:07Z) - Fuzzy Attention Neural Network to Tackle Discontinuity in Airway
Segmentation [67.19443246236048]
Airway segmentation is crucial for the examination, diagnosis, and prognosis of lung diseases.
Some small-sized airway branches (e.g., bronchus and terminaloles) significantly aggravate the difficulty of automatic segmentation.
This paper presents an efficient method for airway segmentation, comprising a novel fuzzy attention neural network and a comprehensive loss function.
arXiv Detail & Related papers (2022-09-05T16:38:13Z) - Dual Attention Network for Heart Rate and Respiratory Rate Estimation [1.5469452301122175]
Non-contact camera based physiological measurement is more accessible and convenient in Telehealth nowadays.
It's also desirable to have a unified network which could estimate both heart rate and respiratory rate to reduce system complexity and latency.
We propose a convolutional neural network which leverages spatial attention and channel attention, which we call it dual attention network (DAN) to jointly estimate heart rate and respiratory rate with camera video as input.
arXiv Detail & Related papers (2021-10-31T03:00:28Z) - Quantification of pulmonary involvement in COVID-19 pneumonia by means
of a cascade oftwo U-nets: training and assessment on multipledatasets using
different annotation criteria [83.83783947027392]
This study aims at exploiting Artificial intelligence (AI) for the identification, segmentation and quantification of COVID-19 pulmonary lesions.
We developed an automated analysis pipeline, the LungQuant system, based on a cascade of two U-nets.
The accuracy in predicting the CT-Severity Score (CT-SS) of the LungQuant system has been also evaluated.
arXiv Detail & Related papers (2021-05-06T10:21:28Z) - Sleep Apnea and Respiratory Anomaly Detection from a Wearable Band and
Oxygen Saturation [1.2291501047353484]
There is a need in general medicine and critical care for a more convenient method to automatically detect sleep apnea from a simple, easy-to-wear device.
The objective is to automatically detect abnormal respiration and estimate the Apnea-Hypopnea-Index (AHI) with a wearable respiratory device.
Four models were trained: one each using the respiratory features only, a feature from the SpO2 (%)-signal only, and two additional models that use the respiratory features and the SpO2 (%)-feature.
arXiv Detail & Related papers (2021-02-24T02:04:57Z) - Collaborative Three-Tier Architecture Non-contact Respiratory Rate
Monitoring using Target Tracking and False Peaks Eliminating Algorithms [10.232449356645608]
Non-contact respiratory monitoring techniques have poor accuracy because they are sensitive to environmental influences like lighting and motion artifacts.
frequent contact between users and the cloud might cause service request delays and potentially the loss of personal data.
We proposed a non-contact respiratory rate monitoring system with a cooperative three-layer design to increase the precision of respiratory monitoring and decrease data transmission latency.
arXiv Detail & Related papers (2020-11-17T07:33:00Z) - Video-based Remote Physiological Measurement via Cross-verified Feature
Disentangling [121.50704279659253]
We propose a cross-verified feature disentangling strategy to disentangle the physiological features with non-physiological representations.
We then use the distilled physiological features for robust multi-task physiological measurements.
The disentangled features are finally used for the joint prediction of multiple physiological signals like average HR values and r signals.
arXiv Detail & Related papers (2020-07-16T09:39:17Z) - Multispectral Video Fusion for Non-contact Monitoring of Respiratory
Rate and Apnea [7.300192965401497]
Non-contact monitoring of respiration can be achieved with near- and far-infrared spectrum cameras.
We present a novel algorithm based on multispectral data fusion that aims at estimating respiratory rate (RR) during apnea.
Our findings may represent a step towards the use of cameras for vital sign monitoring in medical applications.
arXiv Detail & Related papers (2020-04-21T09:07:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.