Dual Attention Network for Heart Rate and Respiratory Rate Estimation
- URL: http://arxiv.org/abs/2111.00390v1
- Date: Sun, 31 Oct 2021 03:00:28 GMT
- Title: Dual Attention Network for Heart Rate and Respiratory Rate Estimation
- Authors: Yuzhuo Ren, Braeden Syrnyk, Niranjan Avadhanam
- Abstract summary: Non-contact camera based physiological measurement is more accessible and convenient in Telehealth nowadays.
It's also desirable to have a unified network which could estimate both heart rate and respiratory rate to reduce system complexity and latency.
We propose a convolutional neural network which leverages spatial attention and channel attention, which we call it dual attention network (DAN) to jointly estimate heart rate and respiratory rate with camera video as input.
- Score: 1.5469452301122175
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Heart rate and respiratory rate measurement is a vital step for diagnosing
many diseases. Non-contact camera based physiological measurement is more
accessible and convenient in Telehealth nowadays than contact instruments such
as fingertip oximeters since non-contact methods reduce risk of infection.
However, remote physiological signal measurement is challenging due to
environment illumination variations, head motion, facial expression, etc. It's
also desirable to have a unified network which could estimate both heart rate
and respiratory rate to reduce system complexity and latency. We propose a
convolutional neural network which leverages spatial attention and channel
attention, which we call it dual attention network (DAN) to jointly estimate
heart rate and respiratory rate with camera video as input. Extensive
experiments demonstrate that our proposed system significantly improves heart
rate and respiratory rate measurement accuracy.
Related papers
- Chaos in Motion: Unveiling Robustness in Remote Heart Rate Measurement through Brain-Inspired Skin Tracking [7.688280190165613]
Existing remote heart rate measurement methods have three serious problems.
We apply chaos theory to computer vision tasks for the first time, thus a brain-inspired framework.
Our method achieves Robust Skin Tracking for Heart Rate measurement, called HR-RST.
arXiv Detail & Related papers (2024-04-11T12:26:10Z) - Non-Contact Breathing Rate Detection Using Optical Flow [0.0]
Breathing rate is a vital health metric that is an invaluable indicator of the overall health of a person.
This paper presents an investigation into a method of non-contact breathing rate detection using a motion detection algorithm, optical flow.
arXiv Detail & Related papers (2023-11-13T10:26:18Z) - Using BOLD-fMRI to Compute the Respiration Volume per Time (RTV) and
Respiration Variation (RV) with Convolutional Neural Networks (CNN) in the
Human Connectome Development Cohort [55.41644538483948]
This study proposes a one-dimensional CNN model for reconstruction of two respiratory measures, RV and RVT.
Results show that a CNN can capture informative features from resting BOLD signals and reconstruct realistic RV and RVT timeseries.
arXiv Detail & Related papers (2023-07-03T18:06:36Z) - Model Explainability in Physiological and Healthcare-based Neural
Networks [26.241527103973887]
The COVID-19 pandemic has highlighted the importance of early detection of changes in SpO2.
Traditional SpO2 measurement methods rely on contact-based sensing.
pulse oximeters may not be available in marginalized communities or undeveloped countries.
Our proposed method can provide a more efficient and accurate way to monitor SpO2 using videos captured from consumer-grade smartphones.
arXiv Detail & Related papers (2023-04-03T20:58:32Z) - PulseImpute: A Novel Benchmark Task for Pulsative Physiological Signal
Imputation [54.839600943189915]
Mobile Health (mHealth) is the ability to use wearable sensors to monitor participant physiology at high frequencies during daily life to enable temporally-precise health interventions.
Despite a rich imputation literature, existing techniques are ineffective for the pulsative signals which comprise many mHealth applications.
We address this gap with PulseImpute, the first large-scale pulsative signal imputation challenge which includes realistic mHealth missingness models, an extensive set of baselines, and clinically-relevant downstream tasks.
arXiv Detail & Related papers (2022-12-14T21:39:15Z) - Fuzzy Attention Neural Network to Tackle Discontinuity in Airway
Segmentation [67.19443246236048]
Airway segmentation is crucial for the examination, diagnosis, and prognosis of lung diseases.
Some small-sized airway branches (e.g., bronchus and terminaloles) significantly aggravate the difficulty of automatic segmentation.
This paper presents an efficient method for airway segmentation, comprising a novel fuzzy attention neural network and a comprehensive loss function.
arXiv Detail & Related papers (2022-09-05T16:38:13Z) - Minute ventilation measurement using Plethysmographic Imaging and
lighting parameters [8.739176372427842]
Breathing disorders such as sleep apnea is a critical disorder that affects a large number of individuals due to the insufficient capacity of the lungs to contain/exchange oxygen and carbon dioxide to ensure that the body is in the stable state of homeostasis.
Respiratory Measurements such as minute ventilation can be used in correlation with other physiological measurements such as heart rate and heart rate variability for remote monitoring of health and detecting symptoms of such breathing related disorders.
arXiv Detail & Related papers (2022-08-29T00:42:48Z) - Real-time landmark detection for precise endoscopic submucosal
dissection via shape-aware relation network [51.44506007844284]
We propose a shape-aware relation network for accurate and real-time landmark detection in endoscopic submucosal dissection surgery.
We first devise an algorithm to automatically generate relation keypoint heatmaps, which intuitively represent the prior knowledge of spatial relations among landmarks.
We then develop two complementary regularization schemes to progressively incorporate the prior knowledge into the training process.
arXiv Detail & Related papers (2021-11-08T07:57:30Z) - Collaborative Three-Tier Architecture Non-contact Respiratory Rate
Monitoring using Target Tracking and False Peaks Eliminating Algorithms [10.232449356645608]
Non-contact respiratory monitoring techniques have poor accuracy because they are sensitive to environmental influences like lighting and motion artifacts.
frequent contact between users and the cloud might cause service request delays and potentially the loss of personal data.
We proposed a non-contact respiratory rate monitoring system with a cooperative three-layer design to increase the precision of respiratory monitoring and decrease data transmission latency.
arXiv Detail & Related papers (2020-11-17T07:33:00Z) - Video-based Remote Physiological Measurement via Cross-verified Feature
Disentangling [121.50704279659253]
We propose a cross-verified feature disentangling strategy to disentangle the physiological features with non-physiological representations.
We then use the distilled physiological features for robust multi-task physiological measurements.
The disentangled features are finally used for the joint prediction of multiple physiological signals like average HR values and r signals.
arXiv Detail & Related papers (2020-07-16T09:39:17Z) - AutoHR: A Strong End-to-end Baseline for Remote Heart Rate Measurement
with Neural Searching [76.4844593082362]
We investigate the reason why existing end-to-end networks perform poorly in challenging conditions and establish a strong baseline for remote HR measurement with architecture search (NAS)
Comprehensive experiments are performed on three benchmark datasets on both intra-temporal and cross-dataset testing.
arXiv Detail & Related papers (2020-04-26T05:43:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.