論文の概要: Towards Explaining Demographic Bias through the Eyes of Face Recognition
Models
- arxiv url: http://arxiv.org/abs/2208.13400v1
- Date: Mon, 29 Aug 2022 07:23:06 GMT
- ステータス: 処理完了
- システム内更新日: 2022-08-30 14:05:39.678454
- Title: Towards Explaining Demographic Bias through the Eyes of Face Recognition
Models
- Title(参考訳): 顔認識モデルによるデモグラフィックバイアスの解明に向けて
- Authors: Biying Fu and Naser Damer
- Abstract要約: データとアルゴリズムの両方に固有のバイアスは、機械学習(ML)ベースの意思決定システムの公平性を最適以下にする。
我々は、異なる人口集団を処理する際に、顔認識モデルの振る舞いの違いを分析する一連の説明可能性ツールを提供することを目標としている。
我々は、アクティベーションマップに基づく高次統計情報を活用して、FRモデルの行動差を特定の顔領域に関連付ける説明可能性ツールを構築する。
- 参考スコア(独自算出の注目度): 6.889667606945215
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Biases inherent in both data and algorithms make the fairness of widespread
machine learning (ML)-based decision-making systems less than optimal. To
improve the trustfulness of such ML decision systems, it is crucial to be aware
of the inherent biases in these solutions and to make them more transparent to
the public and developers. In this work, we aim at providing a set of
explainability tool that analyse the difference in the face recognition models'
behaviors when processing different demographic groups. We do that by
leveraging higher-order statistical information based on activation maps to
build explainability tools that link the FR models' behavior differences to
certain facial regions. The experimental results on two datasets and two face
recognition models pointed out certain areas of the face where the FR models
react differently for certain demographic groups compared to reference groups.
The outcome of these analyses interestingly aligns well with the results of
studies that analyzed the anthropometric differences and the human judgment
differences on the faces of different demographic groups. This is thus the
first study that specifically tries to explain the biased behavior of FR models
on different demographic groups and link it directly to the spatial facial
features. The code is publicly available here.
- Abstract(参考訳): データとアルゴリズムの両方に内在するバイアスは、機械学習(ml)ベースの意思決定システムの公平さを最適よりも低くする。
このようなML決定システムの信頼性を向上させるためには、これらのソリューションの固有のバイアスを認識し、それらを一般や開発者に対してより透過的にすることが重要です。
本研究の目的は,異なる集団群を処理する際に,顔認識モデルの行動の違いを分析するための説明可能性ツールセットを提供することである。
我々は、アクティベーションマップに基づく高次統計情報を活用して、FRモデルの行動差を特定の顔領域に関連付ける説明可能性ツールを構築する。
2つのデータセットと2つの顔認識モデルによる実験結果は、特定の人口集団に対してfrモデルが参照群と異なる反応をする特定の領域を指摘した。
これらの分析結果は、異なる人口集団の顔における人文的差異と人的判断の違いを分析した研究結果とよく一致している。
これは、異なる人口集団におけるFRモデルの偏りのある振る舞いを説明し、空間的な顔の特徴に直接リンクする最初の研究である。
コードはここで公開されている。
関連論文リスト
- Social Bias Probing: Fairness Benchmarking for Language Models [38.180696489079985]
本稿では,社会的偏見を考慮した言語モデル構築のための新しい枠組みを提案する。
既存のフェアネスコレクションの制限に対処するために設計された大規模なベンチマークであるSoFaをキュレートする。
我々は、言語モデル内のバイアスが認識されるよりもニュアンスが高いことを示し、これまで認識されていたよりもより広く符号化されたバイアスの範囲を示している。
論文 参考訳(メタデータ) (2023-11-15T16:35:59Z) - Stable Bias: Analyzing Societal Representations in Diffusion Models [72.27121528451528]
本稿では,テキスト・ツー・イメージ(TTI)システムにおける社会的バイアスを探索する新しい手法を提案する。
我々のアプローチは、プロンプト内の性別や民族のマーカーを列挙して生成された画像の変動を特徴づけることに依存している。
我々はこの手法を利用して3つのTTIシステムによって生成された画像を分析し、そのアウトプットが米国の労働人口層と相関しているのに対して、彼らは常に異なる範囲において、限界化されたアイデンティティを低く表現している。
論文 参考訳(メタデータ) (2023-03-20T19:32:49Z) - Uncovering Bias in Face Generation Models [0.0]
GANと拡散モデルの最近の進歩により、高解像度の超現実的画像の作成が可能になった。
これらのモデルは特定の社会集団を誤って表現し、偏見を呈することがある。
この研究は、3つのアプローチに対するバイアスのきめ細かい理解のための空間をカバーおよび埋め込みする新しい分析である。
論文 参考訳(メタデータ) (2023-02-22T18:57:35Z) - The drivers of online polarization: fitting models to data [0.0]
エコーチャンバー効果と意見偏光は、情報消費における人間のバイアスや、フィードアルゴリズムによって生成されるパーソナライズされたレコメンデーションなど、いくつかの要因によって引き起こされる可能性がある。
これまでは主に意見力学モデルを用いて、分極とエコーチャンバーの出現の背後にあるメカニズムを探索してきた。
シミュレーションから得られた意見分布とソーシャルメディア上で測定した意見分布を数値的に比較する手法を提案する。
論文 参考訳(メタデータ) (2022-05-31T17:00:41Z) - Assessing Demographic Bias Transfer from Dataset to Model: A Case Study
in Facial Expression Recognition [1.5340540198612824]
2つのメトリクスはデータセットの表現バイアスとステレオタイプバイアスに焦点をあて、もう1つはトレーニングされたモデルの残差バイアスに焦点を当てている。
本稿では、一般的なAffectnetデータセットに基づくFER問題に適用することで、メトリクスの有用性を示す。
論文 参考訳(メタデータ) (2022-05-20T09:40:42Z) - Unravelling the Effect of Image Distortions for Biased Prediction of
Pre-trained Face Recognition Models [86.79402670904338]
画像歪みの存在下での4つの最先端深層顔認識モデルの性能評価を行った。
我々は、画像歪みが、異なるサブグループ間でのモデルの性能ギャップと関係していることを観察した。
論文 参考訳(メタデータ) (2021-08-14T16:49:05Z) - Balancing Biases and Preserving Privacy on Balanced Faces in the Wild [50.915684171879036]
現在の顔認識(FR)モデルには、人口統計バイアスが存在する。
さまざまな民族と性別のサブグループにまたがる偏見を測定するために、我々のバランス・フェイススをWildデータセットに導入します。
真偽と偽のサンプルペアを区別するために1点のスコアしきい値に依存すると、最適以下の結果が得られます。
本稿では,最先端ニューラルネットワークから抽出した顔特徴を用いたドメイン適応学習手法を提案する。
論文 参考訳(メタデータ) (2021-03-16T15:05:49Z) - Interpretable Multi-dataset Evaluation for Named Entity Recognition [110.64368106131062]
本稿では,名前付きエンティティ認識(NER)タスクに対する一般的な評価手法を提案する。
提案手法は,モデルとデータセットの違いと,それらの間の相互作用を解釈することを可能にする。
分析ツールを利用可能にすることで、将来の研究者が同様の分析を実行し、この分野の進歩を促進することができる。
論文 参考訳(メタデータ) (2020-11-13T10:53:27Z) - Mitigating Face Recognition Bias via Group Adaptive Classifier [53.15616844833305]
この研究は、全てのグループの顔がより平等に表現できる公正な顔表現を学ぶことを目的としている。
我々の研究は、競争精度を維持しながら、人口集団間での顔認識バイアスを軽減することができる。
論文 参考訳(メタデータ) (2020-06-13T06:43:37Z) - InsideBias: Measuring Bias in Deep Networks and Application to Face
Gender Biometrics [73.85525896663371]
この研究は、ディープニューラルネットワークアーキテクチャに基づく学習プロセスのバイアスについて検討する。
一般的なディープニューラルネットワークに基づく2つの性別検出モデルを採用している。
バイアスモデルを検出する新しい手法であるInsideBiasを提案する。
論文 参考訳(メタデータ) (2020-04-14T15:20:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。