Correlated frequency noise in a multimode acoustic resonator
- URL: http://arxiv.org/abs/2208.13410v5
- Date: Tue, 28 May 2024 08:27:46 GMT
- Title: Correlated frequency noise in a multimode acoustic resonator
- Authors: Nuttamas Tubsrinuan, Jared H. Cole, Per Delsing, Gustav Andersson,
- Abstract summary: This study investigates frequency fluctuations in a surface acoustic wave (SAW) resonator.
Two-level system (TLS) defects show significant degrees of correlations that diminish with increased detuning.
In addition to the TLS-induced noise, we observe strong anomalous frequency fluctuations with slow, anti-correlated dynamics.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Frequency instabilities are a major source of errors in quantum devices. This study investigates frequency fluctuations in a surface acoustic wave (SAW) resonator, where reflection coefficients of 14 SAW modes are measured simultaneously for more than seven hours. We report two distinct noise characteristics. Multimode frequency noise caused by interactions with two-level system (TLS) defects shows significant degrees of correlations that diminish with increased detuning. This finding agrees with the current understanding of the parasitic TLS behavior as one of the dominant noise sources in quantum devices. In addition to the TLS-induced noise, we observe strong anomalous frequency fluctuations with slow, anti-correlated dynamics. These noise bursts resemble signatures of cosmic radiation observed in superconducting quantum systems.
Related papers
- Resonance fluorescence of noisy systems [0.0]
We develop a theory of resonance fluorescence in the low excitation limit on systems in which the transition energy is subject to noise.
We show that different classes of noise influence the RF spectrum in a characteristic way.
arXiv Detail & Related papers (2023-03-02T19:00:35Z) - Autonomous coherence protection of a two-level system in a fluctuating
environment [68.8204255655161]
We re-examine a scheme originally intended to remove the effects of static Doppler broadening from an ensemble of non-interacting two-level systems (qubits)
We demonstrate that this scheme is far more powerful and can also protect a single (or even an ensemble) qubit's energy levels from noise which depends on both time and space.
arXiv Detail & Related papers (2023-02-08T01:44:30Z) - Characterizing low-frequency qubit noise [55.41644538483948]
Fluctuations of the qubit frequencies are one of the major problems to overcome on the way to scalable quantum computers.
The statistics of the fluctuations can be characterized by measuring the correlators of the outcomes of periodically repeated Ramsey measurements.
This work suggests a method that allows describing qubit dynamics during repeated measurements in the presence of evolving noise.
arXiv Detail & Related papers (2022-07-04T22:48:43Z) - Stabilizing and improving qubit coherence by engineering noise spectrum
of two-level systems [52.77024349608834]
Superconducting circuits are a leading platform for quantum computing.
Charge fluctuators inside amorphous oxide layers contribute to both low-frequency $1/f$ charge noise and high-frequency dielectric loss.
We propose to mitigate those harmful effects by engineering the relevant TLS noise spectral densities.
arXiv Detail & Related papers (2022-06-21T18:37:38Z) - Learning Noise via Dynamical Decoupling of Entangled Qubits [49.38020717064383]
Noise in entangled quantum systems is difficult to characterize due to many-body effects involving multiple degrees of freedom.
We develop and apply multi-qubit dynamical decoupling sequences that characterize noise that occurs during two-qubit gates.
arXiv Detail & Related papers (2022-01-26T20:22:38Z) - Frequency fluctuations of ferromagnetic resonances at milliKelvin
temperatures [50.591267188664666]
Noise is detrimental to device performance, especially for quantum coherent circuits.
Recent efforts have demonstrated routes to utilizing magnon systems for quantum technologies, which are based on single magnons to superconducting qubits.
Researching the temporal behavior can help to identify the underlying noise sources.
arXiv Detail & Related papers (2021-07-14T08:00:37Z) - Current Oscillations in Quasi-2D Charge-Density-Wave 1T-TaS2 Devices:
Revisiting the "Narrow Band Noise" Concept [58.720142291102135]
We report on current oscillations in quasi two-dimensional (2D) 1T-TaS2 charge-density-wave devices.
The MHz-frequency range of the oscillations and the linear dependence of the frequency of the oscillations on the current resemble the "narrow band noise"
Analysis of the biasing conditions and current indicate that the observed oscillations are related to the current instabilities due to the voltage-induced transition from the nearly commensurate to incommensurate charge-density-wave phase.
arXiv Detail & Related papers (2020-02-29T22:45:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.