Frequency Fluctuations in Nanomechanical Resonators due to Quantum Defects
- URL: http://arxiv.org/abs/2501.08289v1
- Date: Tue, 14 Jan 2025 18:10:29 GMT
- Title: Frequency Fluctuations in Nanomechanical Resonators due to Quantum Defects
- Authors: M. P. Maksymowych, M. Yuksel, O. A. Hitchcock, N. R. Lee, F. M. Mayor, W. Jiang, M. L. Roukes, A. H. Safavi-Naeini,
- Abstract summary: Two-level system (TLS) defects govern dissipation at millikelvin temperatures.
We observe fast frequency fluctuations of phononic crystal nanomechanical resonators.
The frequency noise is well-explained by mechanical coupling to individual far off-resonant TLS, which are either thermally excited or strongly coupled to thermal fluctuators.
- Score: 0.0
- License:
- Abstract: Nanomechanical resonators promise diverse applications ranging from mass spectrometry to quantum information processing, requiring long phonon lifetimes and frequency stability. Although two-level system (TLS) defects govern dissipation at millikelvin temperatures, the nature of frequency fluctuations remains poorly understood. In nanoscale devices, where acoustic fields are confined to sub-wavelength volumes, strong coupling to individual TLS should dominate over weak coupling to defect ensembles. In this work, we monitor fast frequency fluctuations of phononic crystal nanomechanical resonators, while varying temperature ($10$ mK$-1$ K), drive power ($10^2-10^5$ phonons), and the phononic band structure. We consistently observe random telegraph signals (RTS) which we attribute to state transitions of individual TLS. The frequency noise is well-explained by mechanical coupling to individual far off-resonant TLS, which are either thermally excited or strongly coupled to thermal fluctuators. Understanding this fundamental decoherence process, particularly its RTS structure, opens a clear path towards noise suppression for quantum and sensing applications.
Related papers
- Revealing spin-flip two-level systems using ultra-thin film superconducting resonators [3.9216886385274647]
Material disorders are major sources of noise and loss in solid-state quantum devices.
In this work, employing ultra-thin TiN superconducting resonators, we reveal anomalous TLS behaviors.
A spin-flip TLS model is proposed, in which an effective spin-orbit coupling is generated by inhomogeneous local magnetic fields from defect spins.
arXiv Detail & Related papers (2024-12-20T12:49:50Z) - Phonon engineering of atomic-scale defects in superconducting quantum
circuits [5.596598303356484]
tunneling two-level systems (TLS) have taken on further relevance in the field of quantum computing.
We take a new approach that seeks to directly modify the properties of TLS through nanoscale-engineering.
Our work paves the way for in-depth investigation and coherent control of TLS.
arXiv Detail & Related papers (2023-10-05T22:17:09Z) - Studying phonon coherence with a quantum sensor [0.0]
We use a superconducting qubit as a quantum sensor to perform phonon number-resolved measurements on a phononic crystal cavity.
We observe nonexponential energy decay and a state size-dependent reduction of the dephasing rate.
Our findings comprise a detailed examination of TLS-induced phonon decoherence in the quantum regime.
arXiv Detail & Related papers (2023-02-01T03:52:01Z) - Emergence of highly coherent quantum subsystems of a noisy and dense
spin system [0.0]
Quantum sensors and qubits are usually two-level systems (TLS), the quantum analogs of classical bits which assume binary values '0' or '1'
We show that for a dense TLS network in a noisy nuclear spin bath, we can take advantage of interactions to pass from hopping to fluctuation dominance.
Our work expands the search space for quantum sensors and qubits to include clusters in dense, disordered materials.
arXiv Detail & Related papers (2022-10-03T15:39:55Z) - Reminiscence of classical chaos in driven transmons [117.851325578242]
We show that even off-resonant drives can cause strong modifications to the structure of the transmon spectrum rendering a large part of it chaotic.
Results lead to a photon number threshold characterizing the appearance of chaos-induced quantum demolition effects.
arXiv Detail & Related papers (2022-07-19T16:04:46Z) - Stabilizing and improving qubit coherence by engineering noise spectrum
of two-level systems [52.77024349608834]
Superconducting circuits are a leading platform for quantum computing.
Charge fluctuators inside amorphous oxide layers contribute to both low-frequency $1/f$ charge noise and high-frequency dielectric loss.
We propose to mitigate those harmful effects by engineering the relevant TLS noise spectral densities.
arXiv Detail & Related papers (2022-06-21T18:37:38Z) - Experimentally revealing anomalously large dipoles in a quantum-circuit
dielectric [50.591267188664666]
Two-level systems (TLSs) intrinsic to glasses induce decoherence in many modern quantum devices.
We show the existence of two distinct ensembles of TLSs, interacting weakly and strongly with phonons.
Results may shed new light on the low temperature characteristics of amorphous solids.
arXiv Detail & Related papers (2021-10-20T19:42:22Z) - Frequency fluctuations of ferromagnetic resonances at milliKelvin
temperatures [50.591267188664666]
Noise is detrimental to device performance, especially for quantum coherent circuits.
Recent efforts have demonstrated routes to utilizing magnon systems for quantum technologies, which are based on single magnons to superconducting qubits.
Researching the temporal behavior can help to identify the underlying noise sources.
arXiv Detail & Related papers (2021-07-14T08:00:37Z) - Fast high-fidelity single-qubit gates for flip-flop qubits in silicon [68.8204255655161]
flip-flop qubit is encoded in the states with antiparallel donor-bound electron and donor nuclear spins in silicon.
We study the multilevel system that is formed by the interacting electron and nuclear spins.
We propose an optimal control scheme that produces fast and robust single-qubit gates in the presence of low-frequency noise.
arXiv Detail & Related papers (2021-01-27T18:37:30Z) - Quantum Sensors for Microscopic Tunneling Systems [58.720142291102135]
tunneling Two-Level-Systems (TLS) are important for micro-fabricated quantum devices such as superconducting qubits.
We present a method to characterize individual TLS in virtually arbitrary materials deposited as thin-films.
Our approach opens avenues for quantum material spectroscopy to investigate the structure of tunneling defects.
arXiv Detail & Related papers (2020-11-29T09:57:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.