論文の概要: CH-MARL: A Multimodal Benchmark for Cooperative, Heterogeneous
Multi-Agent Reinforcement Learning
- arxiv url: http://arxiv.org/abs/2208.13626v1
- Date: Fri, 26 Aug 2022 02:21:31 GMT
- ステータス: 処理完了
- システム内更新日: 2022-08-30 12:56:19.363394
- Title: CH-MARL: A Multimodal Benchmark for Cooperative, Heterogeneous
Multi-Agent Reinforcement Learning
- Title(参考訳): 協調型マルチエージェント強化学習のためのマルチモーダルベンチマークch-marl
- Authors: Vasu Sharma, Prasoon Goyal, Kaixiang Lin, Govind Thattai, Qiaozi Gao,
Gaurav S. Sukhatme
- Abstract要約: マルチルームホーム環境において,複数の模擬異種ロボット間の協調作業を含むタスクを含むベンチマークデータセットを提案する。
我々は、統合学習フレームワーク、最先端マルチエージェント強化学習技術のマルチモーダル実装、一貫した評価プロトコルを提供する。
- 参考スコア(独自算出の注目度): 15.686200550604815
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a multimodal (vision-and-language) benchmark for cooperative and
heterogeneous multi-agent learning. We introduce a benchmark multimodal dataset
with tasks involving collaboration between multiple simulated heterogeneous
robots in a rich multi-room home environment. We provide an integrated learning
framework, multimodal implementations of state-of-the-art multi-agent
reinforcement learning techniques, and a consistent evaluation protocol. Our
experiments investigate the impact of different modalities on multi-agent
learning performance. We also introduce a simple message passing method between
agents. The results suggest that multimodality introduces unique challenges for
cooperative multi-agent learning and there is significant room for advancing
multi-agent reinforcement learning methods in such settings.
- Abstract(参考訳): 本稿では,協調型・不均一型マルチエージェント学習のためのマルチモーダル(視覚言語)ベンチマークを提案する。
本稿では,マルチルーム環境における複数ロボットの協調作業を伴うタスクを含むマルチモーダルデータセットのベンチマークについて紹介する。
我々は、統合学習フレームワーク、最先端マルチエージェント強化学習技術のマルチモーダル実装、一貫した評価プロトコルを提供する。
本研究は,マルチエージェント学習性能に及ぼす異なるモダリティの影響について検討する。
また,エージェント間の単純なメッセージパッシング手法も導入する。
その結果,マルチモーダリティは,協調型マルチエージェント学習に特有の課題をもたらし,そのような環境でのマルチエージェント強化学習手法の進展の余地があることが示唆された。
関連論文リスト
- Enabling Multi-Agent Transfer Reinforcement Learning via Scenario
Independent Representation [0.7366405857677227]
マルチエージェント強化学習(MARL)アルゴリズムは、エージェント間の協調や競合を必要とする複雑なタスクに広く採用されている。
本稿では,様々な状態空間を固定サイズの入力に統一することで,MARLの伝達学習を可能にする新しいフレームワークを提案する。
スクラッチから学習するエージェントと比較して,他のシナリオから学んだ操作スキルを用いたマルチエージェント学習性能の大幅な向上を示す。
論文 参考訳(メタデータ) (2024-02-13T02:48:18Z) - Inverse Factorized Q-Learning for Cooperative Multi-agent Imitation
Learning [13.060023718506917]
模倣学習(英: mimicion learning, IL)は、協調型マルチエージェントシステムにおける実証から専門家の行動を模倣する学習の課題である。
本稿では,これらの課題に対処する新しいマルチエージェントILアルゴリズムを提案する。
本手法は,分散Q関数の集約に混在するネットワークを活用することで,集中学習を実現する。
論文 参考訳(メタデータ) (2023-10-10T17:11:20Z) - Multimodal Learning Without Labeled Multimodal Data: Guarantees and Applications [90.6849884683226]
ラベル付き単調データのみを用いた半教師付き環境における相互作用定量化の課題について検討する。
相互作用の正確な情報理論的定義を用いて、我々の重要な貢献は下界と上界の導出である。
本稿では、これらの理論結果を用いてマルチモーダルモデルの性能を推定し、データ収集をガイドし、様々なタスクに対して適切なマルチモーダルモデルを選択する方法について述べる。
論文 参考訳(メタデータ) (2023-06-07T15:44:53Z) - UniS-MMC: Multimodal Classification via Unimodality-supervised
Multimodal Contrastive Learning [29.237813880311943]
本稿では, より信頼性の高いマルチモーダル表現を, 非モーダル予測の弱い監督下で探索する新しいマルチモーダルコントラスト法を提案する。
2つの画像テキスト分類ベンチマークにおける融合特徴を用いた実験結果から,提案手法が現在最先端のマルチモーダル手法より優れていることが示された。
論文 参考訳(メタデータ) (2023-05-16T09:18:38Z) - Learning Reward Machines in Cooperative Multi-Agent Tasks [75.79805204646428]
本稿では,MARL(Multi-Agent Reinforcement Learning)に対する新しいアプローチを提案する。
これは、協調的なタスク分解と、サブタスクの構造をコードする報酬機(RM)の学習を組み合わせる。
提案手法は、部分的に観測可能な環境下での報酬の非マルコフ的性質に対処するのに役立つ。
論文 参考訳(メタデータ) (2023-03-24T15:12:28Z) - Multi-scale Cooperative Multimodal Transformers for Multimodal Sentiment
Analysis in Videos [58.93586436289648]
マルチモーダル感情分析のためのマルチスケール協調型マルチモーダルトランス (MCMulT) アーキテクチャを提案する。
本モデルは,非整合型マルチモーダル列に対する既存手法よりも優れ,整合型マルチモーダル列に対する強い性能を有する。
論文 参考訳(メタデータ) (2022-06-16T07:47:57Z) - Policy Diagnosis via Measuring Role Diversity in Cooperative Multi-agent
RL [107.58821842920393]
我々はエージェントの行動差を定量化し、bfロールの多様性を通して政策パフォーマンスとの関係を構築する
MARLの誤差は, 役割多様性と強い関係を持つ3つの部分に分けられる。
分解された要因は3つの一般的な方向における政策最適化に大きな影響を及ぼす可能性がある。
論文 参考訳(メタデータ) (2022-06-01T04:58:52Z) - Channel Exchanging Networks for Multimodal and Multitask Dense Image
Prediction [125.18248926508045]
本稿では,マルチモーダル融合とマルチタスク学習の両方に適用可能な,自己適応的でパラメータフリーなチャネル交換ネットワーク(CEN)を提案する。
CENは異なるモダリティのワーク間でチャネルを動的に交換する。
濃密な画像予測を応用するために、CENの有効性は4つの異なるシナリオで検証される。
論文 参考訳(メタデータ) (2021-12-04T05:47:54Z) - Multi-Agent Imitation Learning with Copulas [102.27052968901894]
マルチエージェント模倣学習は、観察と行動のマッピングを学習することで、デモからタスクを実行するために複数のエージェントを訓練することを目的としている。
本稿では,確率変数間の依存を捉える強力な統計ツールである copula を用いて,マルチエージェントシステムにおける相関関係と協調関係を明示的にモデル化する。
提案モデルでは,各エージェントの局所的行動パターンと,エージェント間の依存構造のみをフルにキャプチャするコプラ関数を別々に学習することができる。
論文 参考訳(メタデータ) (2021-07-10T03:49:41Z) - Celebrating Diversity in Shared Multi-Agent Reinforcement Learning [20.901606233349177]
深層多エージェント強化学習は、複雑な協調的な課題を解決することを約束している。
本稿では,共有型マルチエージェント強化学習の最適化と表現に多様性を導入することを目的とする。
提案手法は,Google Research Footballと超硬度StarCraft IIマイクロマネジメントタスクにおける最先端性能を実現する。
論文 参考訳(メタデータ) (2021-06-04T00:55:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。