A Variance-Reduced Stochastic Gradient Tracking Algorithm for
Decentralized Optimization with Orthogonality Constraints
- URL: http://arxiv.org/abs/2208.13643v1
- Date: Mon, 29 Aug 2022 14:46:44 GMT
- Title: A Variance-Reduced Stochastic Gradient Tracking Algorithm for
Decentralized Optimization with Orthogonality Constraints
- Authors: Lei Wang and Xin Liu
- Abstract summary: We propose a novel algorithm for decentralized optimization with orthogonality constraints.
VRSGT is the first algorithm for decentralized optimization with orthogonality constraints that reduces both sampling and communication complexities simultaneously.
In the numerical experiments, VRGTS has a promising performance in a real-world autonomous sample.
- Score: 7.028225540638832
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Decentralized optimization with orthogonality constraints is found widely in
scientific computing and data science. Since the orthogonality constraints are
nonconvex, it is quite challenging to design efficient algorithms. Existing
approaches leverage the geometric tools from Riemannian optimization to solve
this problem at the cost of high sample and communication complexities. To
relieve this difficulty, based on two novel techniques that can waive the
orthogonality constraints, we propose a variance-reduced stochastic gradient
tracking (VRSGT) algorithm with the convergence rate of $O(1 / k)$ to a
stationary point. To the best of our knowledge, VRSGT is the first algorithm
for decentralized optimization with orthogonality constraints that reduces both
sampling and communication complexities simultaneously. In the numerical
experiments, VRSGT has a promising performance in a real-world autonomous
driving application.
Related papers
- Decentralized Sum-of-Nonconvex Optimization [42.04181488477227]
We consider the optimization problem of the sum-of-non function, i.e., a guarantee function that is the average non-consensus number.
We propose an accelerated decentralized first-order algorithm by techniques of gradient, tracking into the rate, and multi-consensus.
arXiv Detail & Related papers (2024-02-04T05:48:45Z) - Infeasible Deterministic, Stochastic, and Variance-Reduction Algorithms for Optimization under Orthogonality Constraints [9.301728976515255]
This article provides new practical and theoretical developments for the landing algorithm.
First, the method is extended to the Stiefel manifold.
We also consider variance reduction algorithms when the cost function is an average of many functions.
arXiv Detail & Related papers (2023-03-29T07:36:54Z) - Accelerated First-Order Optimization under Nonlinear Constraints [73.2273449996098]
We exploit between first-order algorithms for constrained optimization and non-smooth systems to design a new class of accelerated first-order algorithms.
An important property of these algorithms is that constraints are expressed in terms of velocities instead of sparse variables.
arXiv Detail & Related papers (2023-02-01T08:50:48Z) - Adaptive Stochastic Optimisation of Nonconvex Composite Objectives [2.1700203922407493]
We propose and analyse a family of generalised composite mirror descent algorithms.
With adaptive step sizes, the proposed algorithms converge without requiring prior knowledge of the problem.
We exploit the low-dimensional structure of the decision sets for high-dimensional problems.
arXiv Detail & Related papers (2022-11-21T18:31:43Z) - Versatile Single-Loop Method for Gradient Estimator: First and Second
Order Optimality, and its Application to Federated Learning [45.78238792836363]
We present a single-loop algorithm named SLEDGE (Single-Loop-E Gradient Estimator) for periodic convergence.
Unlike existing methods, SLEDGE has the advantage of versatility; (ii) second-order optimal, (ii) in the PL region, and (iii) smaller complexity under less of data.
arXiv Detail & Related papers (2022-09-01T11:05:26Z) - Faster Algorithm and Sharper Analysis for Constrained Markov Decision
Process [56.55075925645864]
The problem of constrained decision process (CMDP) is investigated, where an agent aims to maximize the expected accumulated discounted reward subject to multiple constraints.
A new utilities-dual convex approach is proposed with novel integration of three ingredients: regularized policy, dual regularizer, and Nesterov's gradient descent dual.
This is the first demonstration that nonconcave CMDP problems can attain the lower bound of $mathcal O (1/epsilon)$ for all complexity optimization subject to convex constraints.
arXiv Detail & Related papers (2021-10-20T02:57:21Z) - Zeroth and First Order Stochastic Frank-Wolfe Algorithms for Constrained
Optimization [13.170519806372075]
Problems of convex optimization with two sets of constraints arise frequently in the context of semidefinite programming.
Since projection onto the first set of constraints is difficult, it becomes necessary to explore projection-free algorithms.
The efficacy of the proposed algorithms is tested on relevant applications of sparse matrix estimation, clustering via semidefinite relaxation, and uniform sparsest cut problem.
arXiv Detail & Related papers (2021-07-14T08:01:30Z) - Lower Bounds and Optimal Algorithms for Smooth and Strongly Convex
Decentralized Optimization Over Time-Varying Networks [79.16773494166644]
We consider the task of minimizing the sum of smooth and strongly convex functions stored in a decentralized manner across the nodes of a communication network.
We design two optimal algorithms that attain these lower bounds.
We corroborate the theoretical efficiency of these algorithms by performing an experimental comparison with existing state-of-the-art methods.
arXiv Detail & Related papers (2021-06-08T15:54:44Z) - Single-Timescale Stochastic Nonconvex-Concave Optimization for Smooth
Nonlinear TD Learning [145.54544979467872]
We propose two single-timescale single-loop algorithms that require only one data point each step.
Our results are expressed in a form of simultaneous primal and dual side convergence.
arXiv Detail & Related papers (2020-08-23T20:36:49Z) - Cogradient Descent for Bilinear Optimization [124.45816011848096]
We introduce a Cogradient Descent algorithm (CoGD) to address the bilinear problem.
We solve one variable by considering its coupling relationship with the other, leading to a synchronous gradient descent.
Our algorithm is applied to solve problems with one variable under the sparsity constraint.
arXiv Detail & Related papers (2020-06-16T13:41:54Z) - IDEAL: Inexact DEcentralized Accelerated Augmented Lagrangian Method [64.15649345392822]
We introduce a framework for designing primal methods under the decentralized optimization setting where local functions are smooth and strongly convex.
Our approach consists of approximately solving a sequence of sub-problems induced by the accelerated augmented Lagrangian method.
When coupled with accelerated gradient descent, our framework yields a novel primal algorithm whose convergence rate is optimal and matched by recently derived lower bounds.
arXiv Detail & Related papers (2020-06-11T18:49:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.