Uncertainty-Induced Transferability Representation for Source-Free
Unsupervised Domain Adaptation
- URL: http://arxiv.org/abs/2208.13986v1
- Date: Tue, 30 Aug 2022 04:54:53 GMT
- Title: Uncertainty-Induced Transferability Representation for Source-Free
Unsupervised Domain Adaptation
- Authors: Jiangbo Pei, Zhuqing Jiang, Aidong Men, Liang Chen, Yang Liu and
Qingchao Chen
- Abstract summary: Source-free unsupervised domain adaptation (SFUDA) aims to learn a target domain model using unlabeled target data and the knowledge of a well-trained source domain model.
We propose a novel Uncertainty-induced Transferability Representation (UTR), which leverages uncertainty as the tool to analyse the channel-wise transferability of the source encoder.
- Score: 15.76962579279531
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Source-free unsupervised domain adaptation (SFUDA) aims to learn a target
domain model using unlabeled target data and the knowledge of a well-trained
source domain model. Most previous SFUDA works focus on inferring semantics of
target data based on the source knowledge. Without measuring the
transferability of the source knowledge, these methods insufficiently exploit
the source knowledge, and fail to identify the reliability of the inferred
target semantics. However, existing transferability measurements require either
source data or target labels, which are infeasible in SFUDA. To this end,
firstly, we propose a novel Uncertainty-induced Transferability Representation
(UTR), which leverages uncertainty as the tool to analyse the channel-wise
transferability of the source encoder in the absence of the source data and
target labels. The domain-level UTR unravels how transferable the encoder
channels are to the target domain and the instance-level UTR characterizes the
reliability of the inferred target semantics. Secondly, based on the UTR, we
propose a novel Calibrated Adaption Framework (CAF) for SFUDA, including i)the
source knowledge calibration module that guides the target model to learn the
transferable source knowledge and discard the non-transferable one, and ii)the
target semantics calibration module that calibrates the unreliable semantics.
With the help of the calibrated source knowledge and the target semantics, the
model adapts to the target domain safely and ultimately better. We verified the
effectiveness of our method using experimental results and demonstrated that
the proposed method achieves state-of-the-art performances on the three SFUDA
benchmarks. Code is available at https://github.com/SPIresearch/UTR.
Related papers
- Cal-SFDA: Source-Free Domain-adaptive Semantic Segmentation with
Differentiable Expected Calibration Error [50.86671887712424]
The prevalence of domain adaptive semantic segmentation has prompted concerns regarding source domain data leakage.
To circumvent the requirement for source data, source-free domain adaptation has emerged as a viable solution.
We propose a novel calibration-guided source-free domain adaptive semantic segmentation framework.
arXiv Detail & Related papers (2023-08-06T03:28:34Z) - Adaptive Semantic Consistency for Cross-domain Few-shot Classification [27.176106714652327]
Cross-domain few-shot classification (CD-FSC) aims to identify novel target classes with a few samples.
We propose a simple plug-and-play Adaptive Semantic Consistency framework, which improves cross-domain robustness.
The proposed ASC enables explicit transfer of source domain knowledge to prevent the model from overfitting the target domain.
arXiv Detail & Related papers (2023-08-01T15:37:19Z) - Continual Source-Free Unsupervised Domain Adaptation [37.060694803551534]
Existing Source-free Unsupervised Domain Adaptation approaches exhibit catastrophic forgetting.
We propose a Continual SUDA (C-SUDA) framework to cope with the challenge of SUDA in a continual learning setting.
arXiv Detail & Related papers (2023-04-14T20:11:05Z) - Uncertainty-guided Source-free Domain Adaptation [77.3844160723014]
Source-free domain adaptation (SFDA) aims to adapt a classifier to an unlabelled target data set by only using a pre-trained source model.
We propose quantifying the uncertainty in the source model predictions and utilizing it to guide the target adaptation.
arXiv Detail & Related papers (2022-08-16T08:03:30Z) - Learning Unbiased Transferability for Domain Adaptation by Uncertainty
Modeling [107.24387363079629]
Domain adaptation aims to transfer knowledge from a labeled source domain to an unlabeled or a less labeled but related target domain.
Due to the imbalance between the amount of annotated data in the source and target domains, only the target distribution is aligned to the source domain.
We propose a non-intrusive Unbiased Transferability Estimation Plug-in (UTEP) by modeling the uncertainty of a discriminator in adversarial-based DA methods to optimize unbiased transfer.
arXiv Detail & Related papers (2022-06-02T21:58:54Z) - Source-Free Domain Adaptation via Distribution Estimation [106.48277721860036]
Domain Adaptation aims to transfer the knowledge learned from a labeled source domain to an unlabeled target domain whose data distributions are different.
Recently, Source-Free Domain Adaptation (SFDA) has drawn much attention, which tries to tackle domain adaptation problem without using source data.
In this work, we propose a novel framework called SFDA-DE to address SFDA task via source Distribution Estimation.
arXiv Detail & Related papers (2022-04-24T12:22:19Z) - Source Data-absent Unsupervised Domain Adaptation through Hypothesis
Transfer and Labeling Transfer [137.36099660616975]
Unsupervised adaptation adaptation (UDA) aims to transfer knowledge from a related but different well-labeled source domain to a new unlabeled target domain.
Most existing UDA methods require access to the source data, and thus are not applicable when the data are confidential and not shareable due to privacy concerns.
This paper aims to tackle a realistic setting with only a classification model available trained over, instead of accessing to the source data.
arXiv Detail & Related papers (2020-12-14T07:28:50Z) - Do We Really Need to Access the Source Data? Source Hypothesis Transfer
for Unsupervised Domain Adaptation [102.67010690592011]
Unsupervised adaptationUDA (UDA) aims to leverage the knowledge learned from a labeled source dataset to solve similar tasks in a new unlabeled domain.
Prior UDA methods typically require to access the source data when learning to adapt the model.
This work tackles a practical setting where only a trained source model is available and how we can effectively utilize such a model without source data to solve UDA problems.
arXiv Detail & Related papers (2020-02-20T03:13:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.