Weight-variant Latent Causal Models
- URL: http://arxiv.org/abs/2208.14153v1
- Date: Tue, 30 Aug 2022 11:12:59 GMT
- Title: Weight-variant Latent Causal Models
- Authors: Yuhang Liu, Zhen Zhang, Dong Gong, Mingming Gong, Biwei Huang, Anton
van den Hengel, Kun Zhang, Javen Qinfeng Shi
- Abstract summary: Causal representation learning exposes latent high-level causal variables behind low-level observations.
In this work we focus on identifying latent causal variables.
We show that the transitivity severely hinders the identifiability of latent causal variables.
We propose a novel method, termed Structural caUsAl Variational autoEncoder, which directly learns latent causal variables.
- Score: 79.79711624326299
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Causal representation learning exposes latent high-level causal variables
behind low-level observations, which has enormous potential for a set of
downstream tasks of interest. Despite this, identifying the true latent causal
representation from observed data is a great challenge. In this work we focus
on identifying latent causal variables. To this end, we analysis three
intrinsic properties in latent space, including transitivity, permutation and
scaling. We show that the transitivity severely hinders the identifiability of
latent causal variables, while permutation and scaling guide the direction of
identifying latent causal variable. To break the transitivity, we assume the
underlying latent causal relations to be linear Gaussian models, in which the
weights, mean and variance of Gaussian noise are modulated by an additionally
observed variable. Under these assumptions we theoretically show that the
latent causal variables can be identifiable up to trivial permutation and
scaling. Built on this theoretical result, we propose a novel method, termed
Structural caUsAl Variational autoEncoder, which directly learns latent causal
variables, together with the mapping from the latent causal variables to the
observed ones. Experimental results on synthetic and real data demonstrate the
identifiable result and the ability of the proposed method for learning latent
causal variables.
Related papers
- Score matching through the roof: linear, nonlinear, and latent variables causal discovery [18.46845413928147]
Causal discovery from observational data holds great promise.
Existing methods rely on strong assumptions about the underlying causal structure.
We propose a flexible algorithm for causal discovery across linear, nonlinear, and latent variable models.
arXiv Detail & Related papers (2024-07-26T14:09:06Z) - On the Identification of Temporally Causal Representation with Instantaneous Dependence [50.14432597910128]
Temporally causal representation learning aims to identify the latent causal process from time series observations.
Most methods require the assumption that the latent causal processes do not have instantaneous relations.
We propose an textbfIDentification framework for instantanetextbfOus textbfLatent dynamics.
arXiv Detail & Related papers (2024-05-24T08:08:05Z) - Identifiable Latent Neural Causal Models [82.14087963690561]
Causal representation learning seeks to uncover latent, high-level causal representations from low-level observed data.
We determine the types of distribution shifts that do contribute to the identifiability of causal representations.
We translate our findings into a practical algorithm, allowing for the acquisition of reliable latent causal representations.
arXiv Detail & Related papers (2024-03-23T04:13:55Z) - Identifiable Latent Polynomial Causal Models Through the Lens of Change [82.14087963690561]
Causal representation learning aims to unveil latent high-level causal representations from observed low-level data.
One of its primary tasks is to provide reliable assurance of identifying these latent causal models, known as identifiability.
arXiv Detail & Related papers (2023-10-24T07:46:10Z) - Nonlinearity, Feedback and Uniform Consistency in Causal Structural
Learning [0.8158530638728501]
Causal Discovery aims to find automated search methods for learning causal structures from observational data.
This thesis focuses on two questions in causal discovery: (i) providing an alternative definition of k-Triangle Faithfulness that (i) is weaker than strong faithfulness when applied to the Gaussian family of distributions, and (ii) under the assumption that the modified version of Strong Faithfulness holds.
arXiv Detail & Related papers (2023-08-15T01:23:42Z) - Identifiability Guarantees for Causal Disentanglement from Soft
Interventions [26.435199501882806]
Causal disentanglement aims to uncover a representation of data using latent variables that are interrelated through a causal model.
In this paper, we focus on the scenario where unpaired observational and interventional data are available, with each intervention changing the mechanism of a latent variable.
When the causal variables are fully observed, statistically consistent algorithms have been developed to identify the causal model under faithfulness assumptions.
arXiv Detail & Related papers (2023-07-12T15:39:39Z) - Nonparametric Identifiability of Causal Representations from Unknown
Interventions [63.1354734978244]
We study causal representation learning, the task of inferring latent causal variables and their causal relations from mixtures of the variables.
Our goal is to identify both the ground truth latents and their causal graph up to a set of ambiguities which we show to be irresolvable from interventional data.
arXiv Detail & Related papers (2023-06-01T10:51:58Z) - Typing assumptions improve identification in causal discovery [123.06886784834471]
Causal discovery from observational data is a challenging task to which an exact solution cannot always be identified.
We propose a new set of assumptions that constrain possible causal relationships based on the nature of the variables.
arXiv Detail & Related papers (2021-07-22T14:23:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.