Identifiability Guarantees for Causal Disentanglement from Soft
Interventions
- URL: http://arxiv.org/abs/2307.06250v3
- Date: Thu, 9 Nov 2023 02:23:33 GMT
- Title: Identifiability Guarantees for Causal Disentanglement from Soft
Interventions
- Authors: Jiaqi Zhang, Chandler Squires, Kristjan Greenewald, Akash Srivastava,
Karthikeyan Shanmugam, Caroline Uhler
- Abstract summary: Causal disentanglement aims to uncover a representation of data using latent variables that are interrelated through a causal model.
In this paper, we focus on the scenario where unpaired observational and interventional data are available, with each intervention changing the mechanism of a latent variable.
When the causal variables are fully observed, statistically consistent algorithms have been developed to identify the causal model under faithfulness assumptions.
- Score: 26.435199501882806
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Causal disentanglement aims to uncover a representation of data using latent
variables that are interrelated through a causal model. Such a representation
is identifiable if the latent model that explains the data is unique. In this
paper, we focus on the scenario where unpaired observational and interventional
data are available, with each intervention changing the mechanism of a latent
variable. When the causal variables are fully observed, statistically
consistent algorithms have been developed to identify the causal model under
faithfulness assumptions. We here show that identifiability can still be
achieved with unobserved causal variables, given a generalized notion of
faithfulness. Our results guarantee that we can recover the latent causal model
up to an equivalence class and predict the effect of unseen combinations of
interventions, in the limit of infinite data. We implement our causal
disentanglement framework by developing an autoencoding variational Bayes
algorithm and apply it to the problem of predicting combinatorial perturbation
effects in genomics.
Related papers
- Identifiability Guarantees for Causal Disentanglement from Purely Observational Data [10.482728002416348]
Causal disentanglement aims to learn about latent causal factors behind data.
Recent advances establish identifiability results assuming that interventions on (single) latent factors are available.
We provide a precise characterization of latent factors that can be identified in nonlinear causal models.
arXiv Detail & Related papers (2024-10-31T04:18:29Z) - Score matching through the roof: linear, nonlinear, and latent variables causal discovery [18.46845413928147]
Causal discovery from observational data holds great promise.
Existing methods rely on strong assumptions about the underlying causal structure.
We propose a flexible algorithm for causal discovery across linear, nonlinear, and latent variable models.
arXiv Detail & Related papers (2024-07-26T14:09:06Z) - Identifiable Latent Polynomial Causal Models Through the Lens of Change [82.14087963690561]
Causal representation learning aims to unveil latent high-level causal representations from observed low-level data.
One of its primary tasks is to provide reliable assurance of identifying these latent causal models, known as identifiability.
arXiv Detail & Related papers (2023-10-24T07:46:10Z) - General Identifiability and Achievability for Causal Representation
Learning [33.80247458590611]
The paper establishes identifiability and achievability results using two hard uncoupled interventions per node in the latent causal graph.
For identifiability, the paper establishes that perfect recovery of the latent causal model and variables is guaranteed under uncoupled interventions.
The analysis, additionally, recovers the identifiability result for two hard coupled interventions, that is when metadata about the pair of environments that have the same node intervened is known.
arXiv Detail & Related papers (2023-10-24T01:47:44Z) - Nonlinearity, Feedback and Uniform Consistency in Causal Structural
Learning [0.8158530638728501]
Causal Discovery aims to find automated search methods for learning causal structures from observational data.
This thesis focuses on two questions in causal discovery: (i) providing an alternative definition of k-Triangle Faithfulness that (i) is weaker than strong faithfulness when applied to the Gaussian family of distributions, and (ii) under the assumption that the modified version of Strong Faithfulness holds.
arXiv Detail & Related papers (2023-08-15T01:23:42Z) - Nonparametric Identifiability of Causal Representations from Unknown
Interventions [63.1354734978244]
We study causal representation learning, the task of inferring latent causal variables and their causal relations from mixtures of the variables.
Our goal is to identify both the ground truth latents and their causal graph up to a set of ambiguities which we show to be irresolvable from interventional data.
arXiv Detail & Related papers (2023-06-01T10:51:58Z) - Identifying Weight-Variant Latent Causal Models [82.14087963690561]
We find that transitivity acts as a key role in impeding the identifiability of latent causal representations.
Under some mild assumptions, we can show that the latent causal representations can be identified up to trivial permutation and scaling.
We propose a novel method, termed Structural caUsAl Variational autoEncoder, which directly learns latent causal representations and causal relationships among them.
arXiv Detail & Related papers (2022-08-30T11:12:59Z) - BayesIMP: Uncertainty Quantification for Causal Data Fusion [52.184885680729224]
We study the causal data fusion problem, where datasets pertaining to multiple causal graphs are combined to estimate the average treatment effect of a target variable.
We introduce a framework which combines ideas from probabilistic integration and kernel mean embeddings to represent interventional distributions in the reproducing kernel Hilbert space.
arXiv Detail & Related papers (2021-06-07T10:14:18Z) - Disentangling Observed Causal Effects from Latent Confounders using
Method of Moments [67.27068846108047]
We provide guarantees on identifiability and learnability under mild assumptions.
We develop efficient algorithms based on coupled tensor decomposition with linear constraints to obtain scalable and guaranteed solutions.
arXiv Detail & Related papers (2021-01-17T07:48:45Z) - Latent Causal Invariant Model [128.7508609492542]
Current supervised learning can learn spurious correlation during the data-fitting process.
We propose a Latent Causal Invariance Model (LaCIM) which pursues causal prediction.
arXiv Detail & Related papers (2020-11-04T10:00:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.