Identifying Weight-Variant Latent Causal Models
- URL: http://arxiv.org/abs/2208.14153v6
- Date: Mon, 2 Sep 2024 12:44:58 GMT
- Title: Identifying Weight-Variant Latent Causal Models
- Authors: Yuhang Liu, Zhen Zhang, Dong Gong, Mingming Gong, Biwei Huang, Anton van den Hengel, Kun Zhang, Javen Qinfeng Shi,
- Abstract summary: We find that transitivity acts as a key role in impeding the identifiability of latent causal representations.
Under some mild assumptions, we can show that the latent causal representations can be identified up to trivial permutation and scaling.
We propose a novel method, termed Structural caUsAl Variational autoEncoder, which directly learns latent causal representations and causal relationships among them.
- Score: 82.14087963690561
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The task of causal representation learning aims to uncover latent higher-level causal representations that affect lower-level observations. Identifying true latent causal representations from observed data, while allowing instantaneous causal relations among latent variables, remains a challenge, however. To this end, we start from the analysis of three intrinsic properties in identifying latent space from observations: transitivity, permutation indeterminacy, and scaling indeterminacy. We find that transitivity acts as a key role in impeding the identifiability of latent causal representations. To address the unidentifiable issue due to transitivity, we introduce a novel identifiability condition where the underlying latent causal model satisfies a linear-Gaussian model, in which the causal coefficients and the distribution of Gaussian noise are modulated by an additional observed variable. Under some mild assumptions, we can show that the latent causal representations can be identified up to trivial permutation and scaling. Furthermore, based on this theoretical result, we propose a novel method, termed Structural caUsAl Variational autoEncoder, which directly learns latent causal representations and causal relationships among them, together with the mapping from the latent causal variables to the observed ones. We show that the proposed method learns the true parameters asymptotically. Experimental results on synthetic and real data demonstrate the identifiability and consistency results and the efficacy of the proposed method in learning latent causal representations.
Related papers
- Score matching through the roof: linear, nonlinear, and latent variables causal discovery [18.46845413928147]
Causal discovery from observational data holds great promise.
Existing methods rely on strong assumptions about the underlying causal structure.
We propose a flexible algorithm for causal discovery across linear, nonlinear, and latent variable models.
arXiv Detail & Related papers (2024-07-26T14:09:06Z) - On the Identification of Temporally Causal Representation with Instantaneous Dependence [50.14432597910128]
Temporally causal representation learning aims to identify the latent causal process from time series observations.
Most methods require the assumption that the latent causal processes do not have instantaneous relations.
We propose an textbfIDentification framework for instantanetextbfOus textbfLatent dynamics.
arXiv Detail & Related papers (2024-05-24T08:08:05Z) - Identifiable Latent Neural Causal Models [82.14087963690561]
Causal representation learning seeks to uncover latent, high-level causal representations from low-level observed data.
We determine the types of distribution shifts that do contribute to the identifiability of causal representations.
We translate our findings into a practical algorithm, allowing for the acquisition of reliable latent causal representations.
arXiv Detail & Related papers (2024-03-23T04:13:55Z) - Identifiable Latent Polynomial Causal Models Through the Lens of Change [82.14087963690561]
Causal representation learning aims to unveil latent high-level causal representations from observed low-level data.
One of its primary tasks is to provide reliable assurance of identifying these latent causal models, known as identifiability.
arXiv Detail & Related papers (2023-10-24T07:46:10Z) - Nonlinearity, Feedback and Uniform Consistency in Causal Structural
Learning [0.8158530638728501]
Causal Discovery aims to find automated search methods for learning causal structures from observational data.
This thesis focuses on two questions in causal discovery: (i) providing an alternative definition of k-Triangle Faithfulness that (i) is weaker than strong faithfulness when applied to the Gaussian family of distributions, and (ii) under the assumption that the modified version of Strong Faithfulness holds.
arXiv Detail & Related papers (2023-08-15T01:23:42Z) - Identifiability Guarantees for Causal Disentanglement from Soft
Interventions [26.435199501882806]
Causal disentanglement aims to uncover a representation of data using latent variables that are interrelated through a causal model.
In this paper, we focus on the scenario where unpaired observational and interventional data are available, with each intervention changing the mechanism of a latent variable.
When the causal variables are fully observed, statistically consistent algorithms have been developed to identify the causal model under faithfulness assumptions.
arXiv Detail & Related papers (2023-07-12T15:39:39Z) - Nonparametric Identifiability of Causal Representations from Unknown
Interventions [63.1354734978244]
We study causal representation learning, the task of inferring latent causal variables and their causal relations from mixtures of the variables.
Our goal is to identify both the ground truth latents and their causal graph up to a set of ambiguities which we show to be irresolvable from interventional data.
arXiv Detail & Related papers (2023-06-01T10:51:58Z) - Typing assumptions improve identification in causal discovery [123.06886784834471]
Causal discovery from observational data is a challenging task to which an exact solution cannot always be identified.
We propose a new set of assumptions that constrain possible causal relationships based on the nature of the variables.
arXiv Detail & Related papers (2021-07-22T14:23:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.