Identifiable Latent Causal Content for Domain Adaptation under Latent Covariate Shift
- URL: http://arxiv.org/abs/2208.14161v3
- Date: Sun, 31 Mar 2024 23:09:38 GMT
- Title: Identifiable Latent Causal Content for Domain Adaptation under Latent Covariate Shift
- Authors: Yuhang Liu, Zhen Zhang, Dong Gong, Mingming Gong, Biwei Huang, Anton van den Hengel, Kun Zhang, Javen Qinfeng Shi,
- Abstract summary: Multi-source domain adaptation (MSDA) addresses the challenge of learning a label prediction function for an unlabeled target domain.
We present an intricate causal generative model by introducing latent noises across domains, along with a latent content variable and a latent style variable.
The proposed approach showcases exceptional performance and efficacy on both simulated and real-world datasets.
- Score: 82.14087963690561
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multi-source domain adaptation (MSDA) addresses the challenge of learning a label prediction function for an unlabeled target domain by leveraging both the labeled data from multiple source domains and the unlabeled data from the target domain. Conventional MSDA approaches often rely on covariate shift or conditional shift paradigms, which assume a consistent label distribution across domains. However, this assumption proves limiting in practical scenarios where label distributions do vary across domains, diminishing its applicability in real-world settings. For example, animals from different regions exhibit diverse characteristics due to varying diets and genetics. Motivated by this, we propose a novel paradigm called latent covariate shift (LCS), which introduces significantly greater variability and adaptability across domains. Notably, it provides a theoretical assurance for recovering the latent cause of the label variable, which we refer to as the latent content variable. Within this new paradigm, we present an intricate causal generative model by introducing latent noises across domains, along with a latent content variable and a latent style variable to achieve more nuanced rendering of observational data. We demonstrate that the latent content variable can be identified up to block identifiability due to its versatile yet distinct causal structure. We anchor our theoretical insights into a novel MSDA method, which learns the label distribution conditioned on the identifiable latent content variable, thereby accommodating more substantial distribution shifts. The proposed approach showcases exceptional performance and efficacy on both simulated and real-world datasets.
Related papers
- Semi Supervised Heterogeneous Domain Adaptation via Disentanglement and Pseudo-Labelling [4.33404822906643]
Semi-supervised domain adaptation methods leverage information from a source labelled domain to generalize over a scarcely labelled target domain.
Such a setting is denoted as Semi-Supervised Heterogeneous Domain Adaptation (SSHDA)
We introduce SHeDD (Semi-supervised Heterogeneous Domain Adaptation via Disentanglement) an end-to-end neural framework tailored to learning a target domain.
arXiv Detail & Related papers (2024-06-20T08:02:49Z) - Proxy Methods for Domain Adaptation [78.03254010884783]
proxy variables allow for adaptation to distribution shift without explicitly recovering or modeling latent variables.
We develop a two-stage kernel estimation approach to adapt to complex distribution shifts in both settings.
arXiv Detail & Related papers (2024-03-12T09:32:41Z) - Algorithmic Fairness Generalization under Covariate and Dependence Shifts Simultaneously [28.24666589680547]
We introduce a simple but effective approach that aims to learn a fair and invariant classifier.
By augmenting various synthetic data domains through the model, we learn a fair and invariant classifier in source domains.
This classifier can then be generalized to unknown target domains, maintaining both model prediction and fairness concerns.
arXiv Detail & Related papers (2023-11-23T05:52:00Z) - Subspace Identification for Multi-Source Domain Adaptation [30.98339926222619]
Multi-source domain adaptation (MSDA) methods aim to transfer knowledge from multiple labeled source domains to an unlabeled target domain.
Current methods require an adequate number of domains, monotonic transformation of latent variables, and invariant label distributions.
We propose a subspace identification theory that guarantees the disentanglement of domain-invariant and domain-specific variables.
arXiv Detail & Related papers (2023-10-07T07:52:59Z) - Partial Identifiability for Domain Adaptation [17.347755928718872]
We propose a practical domain adaptation framework called iMSDA.
We show that iMSDA outperforms state-of-the-art domain adaptation algorithms on benchmark datasets.
arXiv Detail & Related papers (2023-06-10T19:04:03Z) - Source-free Domain Adaptation Requires Penalized Diversity [60.04618512479438]
Source-free domain adaptation (SFDA) was introduced to address knowledge transfer between different domains in the absence of source data.
In unsupervised SFDA, the diversity is limited to learning a single hypothesis on the source or learning multiple hypotheses with a shared feature extractor.
We propose a novel unsupervised SFDA algorithm that promotes representational diversity through the use of separate feature extractors.
arXiv Detail & Related papers (2023-04-06T00:20:19Z) - Cyclically Disentangled Feature Translation for Face Anti-spoofing [61.70377630461084]
We propose a novel domain adaptation method called cyclically disentangled feature translation network (CDFTN)
CDFTN generates pseudo-labeled samples that possess: 1) source domain-invariant liveness features and 2) target domain-specific content features, which are disentangled through domain adversarial training.
A robust classifier is trained based on the synthetic pseudo-labeled images under the supervision of source domain labels.
arXiv Detail & Related papers (2022-12-07T14:12:34Z) - Learning Conditional Invariance through Cycle Consistency [60.85059977904014]
We propose a novel approach to identify meaningful and independent factors of variation in a dataset.
Our method involves two separate latent subspaces for the target property and the remaining input information.
We demonstrate on synthetic and molecular data that our approach identifies more meaningful factors which lead to sparser and more interpretable models.
arXiv Detail & Related papers (2021-11-25T17:33:12Z) - Instrumental Variable-Driven Domain Generalization with Unobserved
Confounders [53.735614014067394]
Domain generalization (DG) aims to learn from multiple source domains a model that can generalize well on unseen target domains.
We propose an instrumental variable-driven DG method (IV-DG) by removing the bias of the unobserved confounders with two-stage learning.
In the first stage, it learns the conditional distribution of the input features of one domain given input features of another domain.
In the second stage, it estimates the relationship by predicting labels with the learned conditional distribution.
arXiv Detail & Related papers (2021-10-04T13:32:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.