Semi Supervised Heterogeneous Domain Adaptation via Disentanglement and Pseudo-Labelling
- URL: http://arxiv.org/abs/2406.14087v1
- Date: Thu, 20 Jun 2024 08:02:49 GMT
- Title: Semi Supervised Heterogeneous Domain Adaptation via Disentanglement and Pseudo-Labelling
- Authors: Cassio F. Dantas, Raffaele Gaetano, Dino Ienco,
- Abstract summary: Semi-supervised domain adaptation methods leverage information from a source labelled domain to generalize over a scarcely labelled target domain.
Such a setting is denoted as Semi-Supervised Heterogeneous Domain Adaptation (SSHDA)
We introduce SHeDD (Semi-supervised Heterogeneous Domain Adaptation via Disentanglement) an end-to-end neural framework tailored to learning a target domain.
- Score: 4.33404822906643
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Semi-supervised domain adaptation methods leverage information from a source labelled domain with the goal of generalizing over a scarcely labelled target domain. While this setting already poses challenges due to potential distribution shifts between domains, an even more complex scenario arises when source and target data differs in modality representation (e.g. they are acquired by sensors with different characteristics). For instance, in remote sensing, images may be collected via various acquisition modes (e.g. optical or radar), different spectral characteristics (e.g. RGB or multi-spectral) and spatial resolutions. Such a setting is denoted as Semi-Supervised Heterogeneous Domain Adaptation (SSHDA) and it exhibits an even more severe distribution shift due to modality heterogeneity across domains.To cope with the challenging SSHDA setting, here we introduce SHeDD (Semi-supervised Heterogeneous Domain Adaptation via Disentanglement) an end-to-end neural framework tailored to learning a target domain classifier by leveraging both labelled and unlabelled data from heterogeneous data sources. SHeDD is designed to effectively disentangle domain-invariant representations, relevant for the downstream task, from domain-specific information, that can hinder the cross-modality transfer. Additionally, SHeDD adopts an augmentation-based consistency regularization mechanism that takes advantages of reliable pseudo-labels on the unlabelled target samples to further boost its generalization ability on the target domain. Empirical evaluations on two remote sensing benchmarks, encompassing heterogeneous data in terms of acquisition modes and spectral/spatial resolutions, demonstrate the quality of SHeDD compared to both baseline and state-of-the-art competing approaches. Our code is publicly available here: https://github.com/tanodino/SSHDA/
Related papers
- Robust Domain Adaptive Object Detection with Unified Multi-Granularity Alignment [59.831917206058435]
Domain adaptive detection aims to improve the generalization of detectors on target domain.
Recent approaches achieve domain adaption through feature alignment in different granularities via adversarial learning.
We introduce a unified multi-granularity alignment (MGA)-based detection framework for domain-invariant feature learning.
arXiv Detail & Related papers (2023-01-01T08:38:07Z) - Cyclically Disentangled Feature Translation for Face Anti-spoofing [61.70377630461084]
We propose a novel domain adaptation method called cyclically disentangled feature translation network (CDFTN)
CDFTN generates pseudo-labeled samples that possess: 1) source domain-invariant liveness features and 2) target domain-specific content features, which are disentangled through domain adversarial training.
A robust classifier is trained based on the synthetic pseudo-labeled images under the supervision of source domain labels.
arXiv Detail & Related papers (2022-12-07T14:12:34Z) - Making the Best of Both Worlds: A Domain-Oriented Transformer for
Unsupervised Domain Adaptation [31.150256154504696]
Unsupervised Domain Adaptation (UDA) has propelled the deployment of deep learning from limited experimental datasets into real-world unconstrained domains.
Most UDA approaches align features within a common embedding space and apply a shared classifier for target prediction.
We propose to simultaneously conduct feature alignment in two individual spaces focusing on different domains, and create for each space a domain-oriented classifier.
arXiv Detail & Related papers (2022-08-02T01:38:37Z) - An Unsupervised Domain Adaptive Approach for Multimodal 2D Object
Detection in Adverse Weather Conditions [5.217255784808035]
We propose an unsupervised domain adaptation framework to bridge the domain gap between source and target domains.
We use a data augmentation scheme that simulates weather distortions to add domain confusion and prevent overfitting on the source data.
Experiments performed on the DENSE dataset show that our method can substantially alleviate the domain gap.
arXiv Detail & Related papers (2022-03-07T18:10:40Z) - TDACNN: Target-domain-free Domain Adaptation Convolutional Neural
Network for Drift Compensation in Gas Sensors [6.451060076703026]
In this paper, deep learning based on a target-domain-free domain adaptation convolutional neural network (TDACNN) is proposed.
The main concept is that CNNs extract not only the domain-specific features of samples but also the domain-invariant features underlying both the source and target domains.
Experiments on two datasets drift under different settings demonstrate the superiority of TDACNN compared with several state-of-the-art methods.
arXiv Detail & Related papers (2021-10-14T16:30:17Z) - Semantic Concentration for Domain Adaptation [23.706231329913113]
Domain adaptation (DA) paves the way for label annotation and dataset bias issues by the knowledge transfer from a label-rich source domain to a related but unlabeled target domain.
A mainstream of DA methods is to align the feature distributions of the two domains.
We propose Semantic Concentration for Domain Adaptation to encourage the model to concentrate on the most principal features.
arXiv Detail & Related papers (2021-08-12T13:04:36Z) - Instance Level Affinity-Based Transfer for Unsupervised Domain
Adaptation [74.71931918541748]
We propose an instance affinity based criterion for source to target transfer during adaptation, called ILA-DA.
We first propose a reliable and efficient method to extract similar and dissimilar samples across source and target, and utilize a multi-sample contrastive loss to drive the domain alignment process.
We verify the effectiveness of ILA-DA by observing consistent improvements in accuracy over popular domain adaptation approaches on a variety of benchmark datasets.
arXiv Detail & Related papers (2021-04-03T01:33:14Z) - Adversarial Dual Distinct Classifiers for Unsupervised Domain Adaptation [67.83872616307008]
Unversarial Domain adaptation (UDA) attempts to recognize the unlabeled target samples by building a learning model from a differently-distributed labeled source domain.
In this paper, we propose a novel Adrial Dual Distincts Network (AD$2$CN) to align the source and target domain data distribution simultaneously with matching task-specific category boundaries.
To be specific, a domain-invariant feature generator is exploited to embed the source and target data into a latent common space with the guidance of discriminative cross-domain alignment.
arXiv Detail & Related papers (2020-08-27T01:29:10Z) - Simultaneous Semantic Alignment Network for Heterogeneous Domain
Adaptation [67.37606333193357]
We propose aSimultaneous Semantic Alignment Network (SSAN) to simultaneously exploit correlations among categories and align the centroids for each category across domains.
By leveraging target pseudo-labels, a robust triplet-centroid alignment mechanism is explicitly applied to align feature representations for each category.
Experiments on various HDA tasks across text-to-image, image-to-image and text-to-text successfully validate the superiority of our SSAN against state-of-the-art HDA methods.
arXiv Detail & Related papers (2020-08-04T16:20:37Z) - Alleviating Semantic-level Shift: A Semi-supervised Domain Adaptation
Method for Semantic Segmentation [97.8552697905657]
A key challenge of this task is how to alleviate the data distribution discrepancy between the source and target domains.
We propose Alleviating Semantic-level Shift (ASS), which can successfully promote the distribution consistency from both global and local views.
We apply our ASS to two domain adaptation tasks, from GTA5 to Cityscapes and from Synthia to Cityscapes.
arXiv Detail & Related papers (2020-04-02T03:25:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.