Image-Specific Information Suppression and Implicit Local Alignment for
Text-based Person Search
- URL: http://arxiv.org/abs/2208.14365v2
- Date: Fri, 14 Jul 2023 03:07:59 GMT
- Title: Image-Specific Information Suppression and Implicit Local Alignment for
Text-based Person Search
- Authors: Shuanglin Yan, Hao Tang, Liyan Zhang and Jinhui Tang
- Abstract summary: Text-based person search (TBPS) is a challenging task that aims to search pedestrian images with the same identity from an image gallery given a query text.
Most existing methods rely on explicitly generated local parts to model fine-grained correspondence between modalities.
We propose an efficient joint Multi-level Alignment Network (MANet) for TBPS, which can learn aligned image/text feature representations between modalities at multiple levels.
- Score: 61.24539128142504
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Text-based person search (TBPS) is a challenging task that aims to search
pedestrian images with the same identity from an image gallery given a query
text. In recent years, TBPS has made remarkable progress and state-of-the-art
methods achieve superior performance by learning local fine-grained
correspondence between images and texts. However, most existing methods rely on
explicitly generated local parts to model fine-grained correspondence between
modalities, which is unreliable due to the lack of contextual information or
the potential introduction of noise. Moreover, existing methods seldom consider
the information inequality problem between modalities caused by image-specific
information. To address these limitations, we propose an efficient joint
Multi-level Alignment Network (MANet) for TBPS, which can learn aligned
image/text feature representations between modalities at multiple levels, and
realize fast and effective person search. Specifically, we first design an
image-specific information suppression module, which suppresses image
background and environmental factors by relation-guided localization and
channel attention filtration respectively. This module effectively alleviates
the information inequality problem and realizes the alignment of information
volume between images and texts. Secondly, we propose an implicit local
alignment module to adaptively aggregate all pixel/word features of image/text
to a set of modality-shared semantic topic centers and implicitly learn the
local fine-grained correspondence between modalities without additional
supervision and cross-modal interactions. And a global alignment is introduced
as a supplement to the local perspective. The cooperation of global and local
alignment modules enables better semantic alignment between modalities.
Extensive experiments on multiple databases demonstrate the effectiveness and
superiority of our MANet.
Related papers
- TextCoT: Zoom In for Enhanced Multimodal Text-Rich Image Understanding [91.30065932213758]
Large Multimodal Models (LMMs) have sparked a surge in research aimed at harnessing their remarkable reasoning abilities.
We propose TextCoT, a novel Chain-of-Thought framework for text-rich image understanding.
Our method is free of extra training, offering immediate plug-and-play functionality.
arXiv Detail & Related papers (2024-04-15T13:54:35Z) - Language Guided Domain Generalized Medical Image Segmentation [68.93124785575739]
Single source domain generalization holds promise for more reliable and consistent image segmentation across real-world clinical settings.
We propose an approach that explicitly leverages textual information by incorporating a contrastive learning mechanism guided by the text encoder features.
Our approach achieves favorable performance against existing methods in literature.
arXiv Detail & Related papers (2024-04-01T17:48:15Z) - Text-guided Image Restoration and Semantic Enhancement for Text-to-Image Person Retrieval [11.798006331912056]
The goal of Text-to-Image Person Retrieval (TIPR) is to retrieve specific person images according to the given textual descriptions.
We propose a novel TIPR framework to build fine-grained interactions and alignment between person images and the corresponding texts.
arXiv Detail & Related papers (2023-07-18T08:23:46Z) - Cross-Modal Implicit Relation Reasoning and Aligning for Text-to-Image
Person Retrieval [29.884153827619915]
We present IRRA: a cross-modal Implicit Relation Reasoning and Aligning framework.
It learns relations between local visual-textual tokens and enhances global image-text matching.
The proposed method achieves new state-of-the-art results on all three public datasets.
arXiv Detail & Related papers (2023-03-22T12:11:59Z) - HGAN: Hierarchical Graph Alignment Network for Image-Text Retrieval [13.061063817876336]
We propose a novel Hierarchical Graph Alignment Network (HGAN) for image-text retrieval.
First, to capture the comprehensive multimodal features, we construct the feature graphs for the image and text modality respectively.
Then, a multi-granularity shared space is established with a designed Multi-granularity Feature Aggregation and Rearrangement (MFAR) module.
Finally, the ultimate image and text features are further refined through three-level similarity functions to achieve the hierarchical alignment.
arXiv Detail & Related papers (2022-12-16T05:08:52Z) - Learning to Model Multimodal Semantic Alignment for Story Visualization [58.16484259508973]
Story visualization aims to generate a sequence of images to narrate each sentence in a multi-sentence story.
Current works face the problem of semantic misalignment because of their fixed architecture and diversity of input modalities.
We explore the semantic alignment between text and image representations by learning to match their semantic levels in the GAN-based generative model.
arXiv Detail & Related papers (2022-11-14T11:41:44Z) - Fine-Grained Semantically Aligned Vision-Language Pre-Training [151.7372197904064]
Large-scale vision-language pre-training has shown impressive advances in a wide range of downstream tasks.
Existing methods mainly model the cross-modal alignment by the similarity of the global representations of images and texts.
We introduce LO, a fine-grained semantically aLigned visiOn-langUage PrE-training framework, which learns fine-grained semantic alignment from the novel perspective of game-theoretic interactions.
arXiv Detail & Related papers (2022-08-04T07:51:48Z) - CRIS: CLIP-Driven Referring Image Segmentation [71.56466057776086]
We propose an end-to-end CLIP-Driven Referring Image framework (CRIS)
CRIS resorts to vision-language decoding and contrastive learning for achieving the text-to-pixel alignment.
Our proposed framework significantly outperforms the state-of-the-art performance without any post-processing.
arXiv Detail & Related papers (2021-11-30T07:29:08Z) - Step-Wise Hierarchical Alignment Network for Image-Text Matching [29.07229472373576]
We propose a step-wise hierarchical alignment network (SHAN) that decomposes image-text matching into multi-step cross-modal reasoning process.
Specifically, we first achieve local-to-local alignment at fragment level, following by performing global-to-local and global-to-global alignment at context level sequentially.
arXiv Detail & Related papers (2021-06-11T17:05:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.