CRIS: CLIP-Driven Referring Image Segmentation
- URL: http://arxiv.org/abs/2111.15174v1
- Date: Tue, 30 Nov 2021 07:29:08 GMT
- Title: CRIS: CLIP-Driven Referring Image Segmentation
- Authors: Zhaoqing Wang, Yu Lu, Qiang Li, Xunqiang Tao, Yandong Guo, Mingming
Gong, Tongliang Liu
- Abstract summary: We propose an end-to-end CLIP-Driven Referring Image framework (CRIS)
CRIS resorts to vision-language decoding and contrastive learning for achieving the text-to-pixel alignment.
Our proposed framework significantly outperforms the state-of-the-art performance without any post-processing.
- Score: 71.56466057776086
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Referring image segmentation aims to segment a referent via a natural
linguistic expression.Due to the distinct data properties between text and
image, it is challenging for a network to well align text and pixel-level
features. Existing approaches use pretrained models to facilitate learning, yet
separately transfer the language/vision knowledge from pretrained models,
ignoring the multi-modal corresponding information. Inspired by the recent
advance in Contrastive Language-Image Pretraining (CLIP), in this paper, we
propose an end-to-end CLIP-Driven Referring Image Segmentation framework
(CRIS). To transfer the multi-modal knowledge effectively, CRIS resorts to
vision-language decoding and contrastive learning for achieving the
text-to-pixel alignment. More specifically, we design a vision-language decoder
to propagate fine-grained semantic information from textual representations to
each pixel-level activation, which promotes consistency between the two
modalities. In addition, we present text-to-pixel contrastive learning to
explicitly enforce the text feature similar to the related pixel-level features
and dissimilar to the irrelevances. The experimental results on three benchmark
datasets demonstrate that our proposed framework significantly outperforms the
state-of-the-art performance without any post-processing. The code will be
released.
Related papers
- Decoder Pre-Training with only Text for Scene Text Recognition [54.93037783663204]
Scene text recognition (STR) pre-training methods have achieved remarkable progress, primarily relying on synthetic datasets.
We introduce a novel method named Decoder Pre-training with only text for STR (DPTR)
DPTR treats text embeddings produced by the CLIP text encoder as pseudo visual embeddings and uses them to pre-train the decoder.
arXiv Detail & Related papers (2024-08-11T06:36:42Z) - Improving Cross-modal Alignment with Synthetic Pairs for Text-only Image
Captioning [13.357749288588039]
Previous works leverage the CLIP's cross-modal association ability for image captioning, relying solely on textual information under unsupervised settings.
This paper proposes a novel method to address these issues by incorporating synthetic image-text pairs.
A pre-trained text-to-image model is deployed to obtain images that correspond to textual data, and the pseudo features of generated images are optimized toward the real ones in the CLIP embedding space.
arXiv Detail & Related papers (2023-12-14T12:39:29Z) - Synchronizing Vision and Language: Bidirectional Token-Masking
AutoEncoder for Referring Image Segmentation [26.262887028563163]
Referring Image (RIS) aims to segment target objects expressed in natural language within a scene at the pixel level.
We propose a novel bidirectional token-masking autoencoder (BTMAE) inspired by the masked autoencoder (MAE)
BTMAE learns the context of image-to-language and language-to-image by reconstructing missing features in both image and language features at the token level.
arXiv Detail & Related papers (2023-11-29T07:33:38Z) - Non-Contrastive Learning Meets Language-Image Pre-Training [145.6671909437841]
We study the validity of non-contrastive language-image pre-training (nCLIP)
We introduce xCLIP, a multi-tasking framework combining CLIP and nCLIP, and show that nCLIP aids CLIP in enhancing feature semantics.
arXiv Detail & Related papers (2022-10-17T17:57:46Z) - Vision-Language Pre-Training for Boosting Scene Text Detectors [57.08046351495244]
We specifically adapt vision-language joint learning for scene text detection.
We propose to learn contextualized, joint representations through vision-language pre-training.
The pre-trained model is able to produce more informative representations with richer semantics.
arXiv Detail & Related papers (2022-04-29T03:53:54Z) - DenseCLIP: Language-Guided Dense Prediction with Context-Aware Prompting [91.56988987393483]
We present a new framework for dense prediction by implicitly and explicitly leveraging the pre-trained knowledge from CLIP.
Specifically, we convert the original image-text matching problem in CLIP to a pixel-text matching problem and use the pixel-text score maps to guide the learning of dense prediction models.
Our method is model-agnostic, which can be applied to arbitrary dense prediction systems and various pre-trained visual backbones.
arXiv Detail & Related papers (2021-12-02T18:59:32Z) - Primitive Representation Learning for Scene Text Recognition [7.818765015637802]
We propose a primitive representation learning method that aims to exploit intrinsic representations of scene text images.
A Primitive REpresentation learning Network (PREN) is constructed to use the visual text representations for parallel decoding.
We also propose a framework called PREN2D to alleviate the misalignment problem in attention-based methods.
arXiv Detail & Related papers (2021-05-10T11:54:49Z) - Scaling Up Visual and Vision-Language Representation Learning With Noisy
Text Supervision [57.031588264841]
We leverage a noisy dataset of over one billion image alt-text pairs, obtained without expensive filtering or post-processing steps.
A simple dual-encoder architecture learns to align visual and language representations of the image and text pairs using a contrastive loss.
We show that the scale of our corpus can make up for its noise and leads to state-of-the-art representations even with such a simple learning scheme.
arXiv Detail & Related papers (2021-02-11T10:08:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.