Inevitability of knowing less than nothing
- URL: http://arxiv.org/abs/2208.14424v3
- Date: Thu, 14 Nov 2024 11:52:53 GMT
- Title: Inevitability of knowing less than nothing
- Authors: Gilad Gour, Mark M. Wilde, Sarah Brandsen, Isabelle Jianing Geng,
- Abstract summary: In the classical world, entropy and conditional entropy take only non-negative values.
We introduce a physically motivated framework for defining quantum conditional entropy.
- Score: 5.767156832161818
- License:
- Abstract: A colloquial interpretation of entropy is that it is the knowledge gained upon learning the outcome of a random experiment. Conditional entropy is then interpreted as the knowledge gained upon learning the outcome of one random experiment after learning the outcome of another, possibly statistically dependent, random experiment. In the classical world, entropy and conditional entropy take only non-negative values, consistent with the intuition that one has regarding the aforementioned interpretations. However, for certain entangled states, one obtains negative values when evaluating commonly accepted and information-theoretically justified formulas for the quantum conditional entropy, leading to the confounding conclusion that one can know less than nothing in the quantum world. Here, we introduce a physically motivated framework for defining quantum conditional entropy, based on two simple postulates inspired by the second law of thermodynamics (non-decrease of entropy) and extensivity of entropy, and we argue that all plausible definitions of quantum conditional entropy should respect these two postulates. We then prove that all plausible quantum conditional entropies take on negative values for certain entangled states, so that it is inevitable that one can know less than nothing in the quantum world. All of our arguments are based on constructions of physical processes that respect the first postulate, the one inspired by the second law of thermodynamics.
Related papers
- Testing the Quantum of Entropy [0.0]
It is clarified when it is possible to speak about a quantum of entropy, given by the Boltzmann constant k, and about a lower entropy limit $S geq k ln 2$.
arXiv Detail & Related papers (2023-07-19T11:34:54Z) - Demonstrating Quantum Microscopic Reversibility Using Coherent States of
Light [58.8645797643406]
We propose and experimentally test a quantum generalization of the microscopic reversibility when a quantum system interacts with a heat bath.
We verify that the quantum modification for the principle of microscopic reversibility is critical in the low-temperature limit.
arXiv Detail & Related papers (2022-05-26T00:25:29Z) - Logical Entropy and Negative Probabilities in Quantum Mechanics [0.0]
The concept of Logical Entropy, $S_L = 1- sum_i=1n p_i2$, was introduced by David Ellerman in a series of recent papers.
We show that the logical entropy plays a profound role in establishing the peculiar rules of quantum physics.
arXiv Detail & Related papers (2022-01-12T10:49:43Z) - Quantum conditional entropy from information-theoretic principles [10.674604700001966]
We show that any quantum conditional entropy must be negative on certain entangled states and must equal -log(d) on dxd maximally entangled states.
We also prove the non-negativity of conditional entropy on separable states, and we provide a generic definition for the dual of a quantum conditional entropy.
arXiv Detail & Related papers (2021-10-28T17:44:54Z) - Quantum realism: axiomatization and quantification [77.34726150561087]
We build an axiomatization for quantum realism -- a notion of realism compatible with quantum theory.
We explicitly construct some classes of entropic quantifiers that are shown to satisfy almost all of the proposed axioms.
arXiv Detail & Related papers (2021-10-10T18:08:42Z) - Quantum Entropy [0.12183405753834559]
We propose a quantum entropy that quantify the randomness of a pure quantum state via a conjugate pair of observables forming the quantum phase space.
We conjecture an entropy law whereby that entropy of a closed system never decreases, implying a time arrow for particles physics.
arXiv Detail & Related papers (2021-06-29T13:04:55Z) - Quantum indistinguishability through exchangeable desirable gambles [69.62715388742298]
Two particles are identical if all their intrinsic properties, such as spin and charge, are the same.
Quantum mechanics is seen as a normative and algorithmic theory guiding an agent to assess her subjective beliefs represented as (coherent) sets of gambles.
We show how sets of exchangeable observables (gambles) may be updated after a measurement and discuss the issue of defining entanglement for indistinguishable particle systems.
arXiv Detail & Related papers (2021-05-10T13:11:59Z) - Taking the temperature of a pure quantum state [55.41644538483948]
Temperature is a deceptively simple concept that still raises deep questions at the forefront of quantum physics research.
We propose a scheme to measure the temperature of such pure states through quantum interference.
arXiv Detail & Related papers (2021-03-30T18:18:37Z) - Catalytic Transformations of Pure Entangled States [62.997667081978825]
Entanglement entropy is the von Neumann entropy of quantum entanglement of pure states.
The relation between entanglement entropy and entanglement distillation has been known only for the setting, and the meaning of entanglement entropy in the single-copy regime has so far remained open.
Our results imply that entanglement entropy quantifies the amount of entanglement available in a bipartite pure state to be used for quantum information processing, giving results an operational meaning also in entangled single-copy setup.
arXiv Detail & Related papers (2021-02-22T16:05:01Z) - Pseudo Entropy in Free Quantum Field Theories [0.0]
We conjecture two novel properties of Pseudo entropy which we conjecture to be universal in field theories.
Our numerical results imply that pseudo entropy can play a role as a new quantum order parameter.
arXiv Detail & Related papers (2020-11-19T04:25:18Z) - Entropy production in the quantum walk [62.997667081978825]
We focus on the study of the discrete-time quantum walk on the line, from the entropy production perspective.
We argue that the evolution of the coin can be modeled as an open two-level system that exchanges energy with the lattice at some effective temperature.
arXiv Detail & Related papers (2020-04-09T23:18:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.