論文の概要: You Only Search Once: On Lightweight Differentiable Architecture Search
for Resource-Constrained Embedded Platforms
- arxiv url: http://arxiv.org/abs/2208.14446v1
- Date: Tue, 30 Aug 2022 02:23:23 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-01 13:39:54.234415
- Title: You Only Search Once: On Lightweight Differentiable Architecture Search
for Resource-Constrained Embedded Platforms
- Title(参考訳): 軽量な差別化可能なアーキテクチャで、リソースに制約のある組み込みプラットフォームを検索する
- Authors: Xiangzhong Luo, Di Liu, Hao Kong, Shuo Huai, Hui Chen, Weichen Liu
- Abstract要約: 微分可能なニューラルアーキテクチャサーチ(NAS)は、競合するディープニューラルネットワーク(DNN)を自動設計する最も有力な代替品として進化してきた。
我々は、LightNASと呼ばれる軽量ハードウェア対応の差別化可能なNASフレームワークを導入し、ワンタイム検索によって必要なアーキテクチャを見つけ出そうとしている。
従来の最先端技術よりもLightNASの方が優れていることを示すため,広範囲な実験を行った。
- 参考スコア(独自算出の注目度): 10.11289927237036
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Benefiting from the search efficiency, differentiable neural architecture
search (NAS) has evolved as the most dominant alternative to automatically
design competitive deep neural networks (DNNs). We note that DNNs must be
executed under strictly hard performance constraints in real-world scenarios,
for example, the runtime latency on autonomous vehicles. However, to obtain the
architecture that meets the given performance constraint, previous
hardware-aware differentiable NAS methods have to repeat a plethora of search
runs to manually tune the hyper-parameters by trial and error, and thus the
total design cost increases proportionally. To resolve this, we introduce a
lightweight hardware-aware differentiable NAS framework dubbed LightNAS,
striving to find the required architecture that satisfies various performance
constraints through a one-time search (i.e., \underline{\textit{you only search
once}}). Extensive experiments are conducted to show the superiority of
LightNAS over previous state-of-the-art methods.
- Abstract(参考訳): 探索効率から得られる差別化可能なニューラルアーキテクチャサーチ(NAS)は、競合するディープニューラルネットワーク(DNN)を自動設計する最も有力な代替手段として進化してきた。
DNNは、例えば自動運転車のランタイムレイテンシなど、現実世界のシナリオにおいて厳格なパフォーマンス制約の下で実行されなければならない。
しかし、与えられた性能制約を満たすアーキテクチャを得るためには、従来のハードウェア・アウェアな差別化可能なnasメソッドは、試行錯誤によってハイパーパラメータを手動でチューニングするために大量の検索を繰り返す必要があり、設計コストは比例的に増加する。
これを解決するために、LightNASと呼ばれる軽量ハードウェア対応の差別化可能なNASフレームワークを導入し、1回検索で様々な性能制約を満たす必要なアーキテクチャを見つけ出そうとする(例: \underline{\textit{you only search once}})。
これまでの最先端手法よりもlightnasが優れていることを示すために,広範な実験を行った。
関連論文リスト
- DNA Family: Boosting Weight-Sharing NAS with Block-Wise Supervisions [121.05720140641189]
蒸留型ニューラルアーキテクチャ(DNA)技術を用いたモデル群を開発した。
提案するDNAモデルでは,アルゴリズムを用いてサブサーチ空間にのみアクセス可能な従来の手法とは対照的に,すべてのアーキテクチャ候補を評価できる。
当社のモデルでは,モバイルコンボリューションネットワークと小型ビジョントランスフォーマーにおいて,ImageNet上で78.9%,83.6%の最先端トップ1精度を実現している。
論文 参考訳(メタデータ) (2024-03-02T22:16:47Z) - Search-time Efficient Device Constraints-Aware Neural Architecture
Search [6.527454079441765]
コンピュータビジョンや自然言語処理といったディープラーニング技術は、計算コストが高く、メモリ集約的です。
ニューラルアーキテクチャサーチ(NAS)によるデバイス制約に最適化されたタスク固有のディープラーニングアーキテクチャの構築を自動化する。
本稿では,エッジデバイス制約を組み込んだ高速ニューラルネットワークアーキテクチャ探索の原理的手法であるDCA-NASを提案する。
論文 参考訳(メタデータ) (2023-07-10T09:52:28Z) - Generalizable Lightweight Proxy for Robust NAS against Diverse
Perturbations [59.683234126055694]
最近のニューラルアーキテクチャサーチ(NAS)フレームワークは、与えられた条件に対して最適なアーキテクチャを見つけるのに成功している。
クリーン画像と摂動画像の両方の特徴,パラメータ,勾配の整合性を考慮した,軽量で堅牢なゼロコストプロキシを提案する。
提案手法は,多種多様な摂動にまたがる堅牢性を示す一般化可能な特徴を学習可能な,効率的かつ迅速なニューラルアーキテクチャの探索を容易にする。
論文 参考訳(メタデータ) (2023-06-08T08:34:26Z) - $\beta$-DARTS: Beta-Decay Regularization for Differentiable Architecture
Search [85.84110365657455]
本研究では,DARTSに基づくNAS探索過程を正規化するために,ベータデカイと呼ばれるシンプルだが効率的な正規化手法を提案する。
NAS-Bench-201の実験結果から,提案手法は探索過程の安定化に有効であり,探索されたネットワークを異なるデータセット間で転送しやすくする。
論文 参考訳(メタデータ) (2022-03-03T11:47:14Z) - L$^{2}$NAS: Learning to Optimize Neural Architectures via
Continuous-Action Reinforcement Learning [23.25155249879658]
微分可能なアーキテクチャサーチ(NAS)は、ディープニューラルネットワーク設計において顕著な結果を得た。
L$2$は,DART201ベンチマークやNASS,Imse-for-All検索ポリシで,最先端の結果が得られることを示す。
論文 参考訳(メタデータ) (2021-09-25T19:26:30Z) - Searching Efficient Model-guided Deep Network for Image Denoising [61.65776576769698]
モデルガイド設計とNAS(MoD-NAS)をつなぐ新しいアプローチを提案する。
MoD-NASは、再利用可能な幅探索戦略と密結合された探索ブロックを用いて、各層の操作を自動的に選択する。
いくつかの一般的なデータセットに対する実験結果から、我々のMoD-NASは現在の最先端手法よりもPSNR性能が向上していることが示された。
論文 参考訳(メタデータ) (2021-04-06T14:03:01Z) - Memory-Efficient Hierarchical Neural Architecture Search for Image
Restoration [68.6505473346005]
メモリ効率の高い階層型NAS HiNAS(HiNAS)を提案する。
単一の GTX1080Ti GPU では、BSD 500 でネットワークを消すのに約 1 時間、DIV2K で超解像構造を探すのに 3.5 時間しかかかりません。
論文 参考訳(メタデータ) (2020-12-24T12:06:17Z) - Progressive Automatic Design of Search Space for One-Shot Neural
Architecture Search [15.017964136568061]
単発モデルの精度が高いモデルでは,スタンドアローンの訓練では必ずしも優れた性能が得られない。
PAD-NASという検索空間のプログレッシブ自動設計を提案する。
このようにして、PAD-NASは各レイヤの操作を自動的に設計し、検索空間の品質とモデルの多様性のトレードオフを達成できる。
論文 参考訳(メタデータ) (2020-05-15T14:21:07Z) - DDPNAS: Efficient Neural Architecture Search via Dynamic Distribution
Pruning [135.27931587381596]
DDPNASと呼ばれる効率よく統一されたNASフレームワークを提案する。
検索空間は動的に切断され,その分布はいくつかのエポック毎に更新される。
提案した効率的なネットワーク生成手法により,与えられた制約に対する最適なニューラルネットワークアーキテクチャを直接取得する。
論文 参考訳(メタデータ) (2019-05-28T06:35:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。