Do language models make human-like predictions about the coreferents of
Italian anaphoric zero pronouns?
- URL: http://arxiv.org/abs/2208.14554v1
- Date: Tue, 30 Aug 2022 22:06:07 GMT
- Title: Do language models make human-like predictions about the coreferents of
Italian anaphoric zero pronouns?
- Authors: James A. Michaelov and Benjamin K. Bergen
- Abstract summary: We test whether 12 contemporary language models display expectations that reflect human behavior when exposed to sentences with zero pronouns.
We find that three models - XGLM 2.9B, 4.5B, and 7.5B - capture the human behavior from all the experiments.
This result suggests that human expectations about coreference can be derived from exposure to language, and also indicates features of language models that allow them to better reflect human behavior.
- Score: 0.6091702876917281
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Some languages allow arguments to be omitted in certain contexts. Yet human
language comprehenders reliably infer the intended referents of these zero
pronouns, in part because they construct expectations about which referents are
more likely. We ask whether Neural Language Models also extract the same
expectations. We test whether 12 contemporary language models display
expectations that reflect human behavior when exposed to sentences with zero
pronouns from five behavioral experiments conducted in Italian by Carminati
(2005). We find that three models - XGLM 2.9B, 4.5B, and 7.5B - capture the
human behavior from all the experiments, with others successfully modeling some
of the results. This result suggests that human expectations about coreference
can be derived from exposure to language, and also indicates features of
language models that allow them to better reflect human behavior.
Related papers
- A Psycholinguistic Evaluation of Language Models' Sensitivity to Argument Roles [0.06554326244334868]
We evaluate large language models' sensitivity to argument roles by replicating psycholinguistic studies on human argument role processing.
We find that language models are able to distinguish verbs that appear in plausible and implausible contexts, where plausibility is determined through the relation between the verb and its preceding arguments.
This indicates that language models' capacity to detect verb plausibility does not arise from the same mechanism that underlies human real-time sentence processing.
arXiv Detail & Related papers (2024-10-21T16:05:58Z) - Perceptions of Linguistic Uncertainty by Language Models and Humans [26.69714008538173]
We investigate how language models map linguistic expressions of uncertainty to numerical responses.
We find that 7 out of 10 models are able to map uncertainty expressions to probabilistic responses in a human-like manner.
This sensitivity indicates that language models are substantially more susceptible to bias based on their prior knowledge.
arXiv Detail & Related papers (2024-07-22T17:26:12Z) - The Neuro-Symbolic Inverse Planning Engine (NIPE): Modeling
Probabilistic Social Inferences from Linguistic Inputs [50.32802502923367]
We study the process of language driving and influencing social reasoning in a probabilistic goal inference domain.
We propose a neuro-symbolic model that carries out goal inference from linguistic inputs of agent scenarios.
Our model closely matches human response patterns and better predicts human judgements than using an LLM alone.
arXiv Detail & Related papers (2023-06-25T19:38:01Z) - A fine-grained comparison of pragmatic language understanding in humans
and language models [2.231167375820083]
We compare language models and humans on seven pragmatic phenomena.
We find that the largest models achieve high accuracy and match human error patterns.
Preliminary evidence that models and humans are sensitive to similar linguistic cues.
arXiv Detail & Related papers (2022-12-13T18:34:59Z) - Discovering Latent Knowledge in Language Models Without Supervision [72.95136739040676]
Existing techniques for training language models can be misaligned with the truth.
We propose directly finding latent knowledge inside the internal activations of a language model in a purely unsupervised way.
We show that despite using no supervision and no model outputs, our method can recover diverse knowledge represented in large language models.
arXiv Detail & Related papers (2022-12-07T18:17:56Z) - Speaking Multiple Languages Affects the Moral Bias of Language Models [70.94372902010232]
Pre-trained multilingual language models (PMLMs) are commonly used when dealing with data from multiple languages and cross-lingual transfer.
Do the models capture moral norms from English and impose them on other languages?
Our experiments demonstrate that, indeed, PMLMs encode differing moral biases, but these do not necessarily correspond to cultural differences or commonalities in human opinions.
arXiv Detail & Related papers (2022-11-14T20:08:54Z) - Transparency Helps Reveal When Language Models Learn Meaning [71.96920839263457]
Our systematic experiments with synthetic data reveal that, with languages where all expressions have context-independent denotations, both autoregressive and masked language models learn to emulate semantic relations between expressions.
Turning to natural language, our experiments with a specific phenomenon -- referential opacity -- add to the growing body of evidence that current language models do not well-represent natural language semantics.
arXiv Detail & Related papers (2022-10-14T02:35:19Z) - Do Large Language Models know what humans know? [6.2997667081978825]
We present a linguistic version of the False Belief Task to both human participants and a Large Language Model, GPT-3.
Both are sensitive to others' beliefs, but while the language model significantly exceeds chance behavior, it does not perform as well as the humans, nor does it explain the full extent of their behavior.
This suggests that while statistical learning from language exposure may in part explain how humans develop the ability to reason about the mental states of others, other mechanisms are also responsible.
arXiv Detail & Related papers (2022-09-04T01:29:53Z) - Training Language Models with Natural Language Feedback [51.36137482891037]
We learn from language feedback on model outputs using a three-step learning algorithm.
In synthetic experiments, we first evaluate whether language models accurately incorporate feedback to produce refinements.
Using only 100 samples of human-written feedback, our learning algorithm finetunes a GPT-3 model to roughly human-level summarization.
arXiv Detail & Related papers (2022-04-29T15:06:58Z) - Do Multilingual Language Models Capture Differing Moral Norms? [71.52261949766101]
Massively multilingual sentence representations are trained on large corpora of uncurated data.
This may cause the models to grasp cultural values including moral judgments from the high-resource languages.
The lack of data in certain languages can also lead to developing random and thus potentially harmful beliefs.
arXiv Detail & Related papers (2022-03-18T12:26:37Z) - Uncovering Constraint-Based Behavior in Neural Models via Targeted
Fine-Tuning [9.391375268580806]
We show that competing linguistic processes within a language obscure underlying linguistic knowledge.
While human behavior has been found to be similar across languages, we find cross-linguistic variation in model behavior.
Our results suggest that models need to learn both the linguistic constraints in a language and their relative ranking, with mismatches in either producing non-human-like behavior.
arXiv Detail & Related papers (2021-06-02T14:52:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.