Scatter Points in Space: 3D Detection from Multi-view Monocular Images
- URL: http://arxiv.org/abs/2208.14738v1
- Date: Wed, 31 Aug 2022 09:38:05 GMT
- Title: Scatter Points in Space: 3D Detection from Multi-view Monocular Images
- Authors: Jianlin Liu, Zhuofei Huang, Dihe Huang, Shang Xu, Ying Chen, and Yong
Liu
- Abstract summary: 3D object detection from monocular image(s) is a challenging and long-standing problem of computer vision.
Recent methods tend to aggregate multiview feature by sampling regular 3D grid densely in space.
We propose a learnable keypoints sampling method, which scatters pseudo surface points in 3D space, in order to keep data sparsity.
- Score: 8.71944437852952
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: 3D object detection from monocular image(s) is a challenging and
long-standing problem of computer vision. To combine information from different
perspectives without troublesome 2D instance tracking, recent methods tend to
aggregate multiview feature by sampling regular 3D grid densely in space, which
is inefficient. In this paper, we attempt to improve multi-view feature
aggregation by proposing a learnable keypoints sampling method, which scatters
pseudo surface points in 3D space, in order to keep data sparsity. The
scattered points augmented by multi-view geometric constraints and visual
features are then employed to infer objects location and shape in the scene. To
make up the limitations of single frame and model multi-view geometry
explicitly, we further propose a surface filter module for noise suppression.
Experimental results show that our method achieves significantly better
performance than previous works in terms of 3D detection (more than 0.1 AP
improvement on some categories of ScanNet). The code will be publicly
available.
Related papers
- 3D Small Object Detection with Dynamic Spatial Pruning [62.72638845817799]
We propose an efficient feature pruning strategy for 3D small object detection.
We present a multi-level 3D detector named DSPDet3D which benefits from high spatial resolution.
It takes less than 2s to directly process a whole building consisting of more than 4500k points while detecting out almost all objects.
arXiv Detail & Related papers (2023-05-05T17:57:04Z) - Sparse4D: Multi-view 3D Object Detection with Sparse Spatial-Temporal
Fusion [14.15155927539293]
We introduce Sparse4D, which does the iterative refinement of anchor boxes via sparsely sampling and fusing spatial-temporal features.
In experiment, our method outperforms all sparse based methods and most BEV based methods on detection task in the nuScenes dataset.
arXiv Detail & Related papers (2022-11-19T04:20:57Z) - Bridged Transformer for Vision and Point Cloud 3D Object Detection [92.86856146086316]
Bridged Transformer (BrT) is an end-to-end architecture for 3D object detection.
BrT learns to identify 3D and 2D object bounding boxes from both points and image patches.
We experimentally show that BrT surpasses state-of-the-art methods on SUN RGB-D and ScanNetV2 datasets.
arXiv Detail & Related papers (2022-10-04T05:44:22Z) - Exploiting More Information in Sparse Point Cloud for 3D Single Object
Tracking [9.693724357115762]
3D single object tracking is a key task in 3D computer vision.
The sparsity of point clouds makes it difficult to compute the similarity and locate the object.
We propose a sparse-to-dense and transformer-based framework for 3D single object tracking.
arXiv Detail & Related papers (2022-10-02T13:38:30Z) - A Simple Baseline for Multi-Camera 3D Object Detection [94.63944826540491]
3D object detection with surrounding cameras has been a promising direction for autonomous driving.
We present SimMOD, a Simple baseline for Multi-camera Object Detection.
We conduct extensive experiments on the 3D object detection benchmark of nuScenes to demonstrate the effectiveness of SimMOD.
arXiv Detail & Related papers (2022-08-22T03:38:01Z) - Graph-DETR3D: Rethinking Overlapping Regions for Multi-View 3D Object
Detection [17.526914782562528]
We propose Graph-DETR3D to automatically aggregate multi-view imagery information through graph structure learning (GSL)
Our best model achieves 49.5 NDS on the nuScenes test leaderboard, achieving new state-of-the-art in comparison with various published image-view 3D object detectors.
arXiv Detail & Related papers (2022-04-25T12:10:34Z) - RBGNet: Ray-based Grouping for 3D Object Detection [104.98776095895641]
We propose the RBGNet framework, a voting-based 3D detector for accurate 3D object detection from point clouds.
We propose a ray-based feature grouping module, which aggregates the point-wise features on object surfaces using a group of determined rays.
Our model achieves state-of-the-art 3D detection performance on ScanNet V2 and SUN RGB-D with remarkable performance gains.
arXiv Detail & Related papers (2022-04-05T14:42:57Z) - DETR3D: 3D Object Detection from Multi-view Images via 3D-to-2D Queries [43.02373021724797]
We introduce a framework for multi-camera 3D object detection.
Our method manipulates predictions directly in 3D space.
We achieve state-of-the-art performance on the nuScenes autonomous driving benchmark.
arXiv Detail & Related papers (2021-10-13T17:59:35Z) - From Multi-View to Hollow-3D: Hallucinated Hollow-3D R-CNN for 3D Object
Detection [101.20784125067559]
We propose a new architecture, namely Hallucinated Hollow-3D R-CNN, to address the problem of 3D object detection.
In our approach, we first extract the multi-view features by sequentially projecting the point clouds into the perspective view and the bird-eye view.
The 3D objects are detected via a box refinement module with a novel Hierarchical Voxel RoI Pooling operation.
arXiv Detail & Related papers (2021-07-30T02:00:06Z) - Reinforced Axial Refinement Network for Monocular 3D Object Detection [160.34246529816085]
Monocular 3D object detection aims to extract the 3D position and properties of objects from a 2D input image.
Conventional approaches sample 3D bounding boxes from the space and infer the relationship between the target object and each of them, however, the probability of effective samples is relatively small in the 3D space.
We propose to start with an initial prediction and refine it gradually towards the ground truth, with only one 3d parameter changed in each step.
This requires designing a policy which gets a reward after several steps, and thus we adopt reinforcement learning to optimize it.
arXiv Detail & Related papers (2020-08-31T17:10:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.