Multi-View Reconstruction using Signed Ray Distance Functions (SRDF)
- URL: http://arxiv.org/abs/2209.00082v1
- Date: Wed, 31 Aug 2022 19:32:17 GMT
- Title: Multi-View Reconstruction using Signed Ray Distance Functions (SRDF)
- Authors: Pierre Zins, Yuanlu Xu, Edmond Boyer, Stefanie Wuhrer, Tony Tung
- Abstract summary: We investigate a new computational approach that builds on a novel shape representation that is volumetric.
The shape energy associated to this representation evaluates 3D geometry given color images and does not need appearance prediction.
In practice we propose an implicit shape representation, the SRDF, based on signed distances which we parameterize by depths along camera rays.
- Score: 22.75986869918975
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we address the problem of multi-view 3D shape reconstruction.
While recent differentiable rendering approaches associated to implicit shape
representations have provided breakthrough performance, they are still
computationally heavy and often lack precision on the estimated geometries. To
overcome these limitations we investigate a new computational approach that
builds on a novel shape representation that is volumetric, as in recent
differentiable rendering approaches, but parameterized with depth maps to
better materialize the shape surface. The shape energy associated to this
representation evaluates 3D geometry given color images and does not need
appearance prediction but still benefits from volumetric integration when
optimized. In practice we propose an implicit shape representation, the SRDF,
based on signed distances which we parameterize by depths along camera rays.
The associated shape energy considers the agreement between depth prediction
consistency and photometric consistency, this at 3D locations within the
volumetric representation. Various photo-consistency priors can be accounted
for such as a median based baseline, or a more elaborated criterion as with a
learned function. The approach retains pixel-accuracy with depth maps and is
parallelizable. Our experiments over standard datasets shows that it provides
state-of-the-art results with respect to recent approaches with implicit shape
representations as well as with respect to traditional multi-view stereo
methods.
Related papers
- Probabilistic Directed Distance Fields for Ray-Based Shape Representations [8.134429779950658]
Directed Distance Fields (DDFs) are a novel neural shape representation that builds upon classical distance fields.
We show how to model inherent discontinuities in the underlying field.
We then apply DDFs to several applications, including single-shape fitting, generative modelling, and single-image 3D reconstruction.
arXiv Detail & Related papers (2024-04-13T21:02:49Z) - FrozenRecon: Pose-free 3D Scene Reconstruction with Frozen Depth Models [67.96827539201071]
We propose a novel test-time optimization approach for 3D scene reconstruction.
Our method achieves state-of-the-art cross-dataset reconstruction on five zero-shot testing datasets.
arXiv Detail & Related papers (2023-08-10T17:55:02Z) - Learning Neural Radiance Fields from Multi-View Geometry [1.1011268090482573]
We present a framework, called MVG-NeRF, that combines Multi-View Geometry algorithms and Neural Radiance Fields (NeRF) for image-based 3D reconstruction.
NeRF has revolutionized the field of implicit 3D representations, mainly due to a differentiable rendering formulation that enables high-quality and geometry-aware novel view synthesis.
arXiv Detail & Related papers (2022-10-24T08:53:35Z) - Beyond 3DMM: Learning to Capture High-fidelity 3D Face Shape [77.95154911528365]
3D Morphable Model (3DMM) fitting has widely benefited face analysis due to its strong 3D priori.
Previous reconstructed 3D faces suffer from degraded visual verisimilitude due to the loss of fine-grained geometry.
This paper proposes a complete solution to capture the personalized shape so that the reconstructed shape looks identical to the corresponding person.
arXiv Detail & Related papers (2022-04-09T03:46:18Z) - Implicit Neural Deformation for Multi-View Face Reconstruction [43.88676778013593]
We present a new method for 3D face reconstruction from multi-view RGB images.
Unlike previous methods which are built upon 3D morphable models, our method leverages an implicit representation to encode rich geometric features.
Our experimental results on several benchmark datasets demonstrate that our approach outperforms alternative baselines and achieves superior face reconstruction results compared to state-of-the-art methods.
arXiv Detail & Related papers (2021-12-05T07:02:53Z) - Neural Radiance Fields Approach to Deep Multi-View Photometric Stereo [103.08512487830669]
We present a modern solution to the multi-view photometric stereo problem (MVPS)
We procure the surface orientation using a photometric stereo (PS) image formation model and blend it with a multi-view neural radiance field representation to recover the object's surface geometry.
Our method performs neural rendering of multi-view images while utilizing surface normals estimated by a deep photometric stereo network.
arXiv Detail & Related papers (2021-10-11T20:20:03Z) - H3D-Net: Few-Shot High-Fidelity 3D Head Reconstruction [27.66008315400462]
Recent learning approaches that implicitly represent surface geometry have shown impressive results in the problem of multi-view 3D reconstruction.
We tackle these limitations for the specific problem of few-shot full 3D head reconstruction.
We learn a shape model of 3D heads from thousands of incomplete raw scans using implicit representations.
arXiv Detail & Related papers (2021-07-26T23:04:18Z) - Volume Rendering of Neural Implicit Surfaces [57.802056954935495]
This paper aims to improve geometry representation and reconstruction in neural volume rendering.
We achieve that by modeling the volume density as a function of the geometry.
Applying this new density representation to challenging scene multiview datasets produced high quality geometry reconstructions.
arXiv Detail & Related papers (2021-06-22T20:23:16Z) - From Points to Multi-Object 3D Reconstruction [71.17445805257196]
We propose a method to detect and reconstruct multiple 3D objects from a single RGB image.
A keypoint detector localizes objects as center points and directly predicts all object properties, including 9-DoF bounding boxes and 3D shapes.
The presented approach performs lightweight reconstruction in a single-stage, it is real-time capable, fully differentiable and end-to-end trainable.
arXiv Detail & Related papers (2020-12-21T18:52:21Z) - Geometric Correspondence Fields: Learned Differentiable Rendering for 3D
Pose Refinement in the Wild [96.09941542587865]
We present a novel 3D pose refinement approach based on differentiable rendering for objects of arbitrary categories in the wild.
In this way, we precisely align 3D models to objects in RGB images which results in significantly improved 3D pose estimates.
We evaluate our approach on the challenging Pix3D dataset and achieve up to 55% relative improvement compared to state-of-the-art refinement methods in multiple metrics.
arXiv Detail & Related papers (2020-07-17T12:34:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.