論文の概要: Hybrid Gromov-Wasserstein Embedding for Capsule Learning
- arxiv url: http://arxiv.org/abs/2209.00232v2
- Date: Tue, 24 Oct 2023 11:13:37 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-26 03:39:53.905817
- Title: Hybrid Gromov-Wasserstein Embedding for Capsule Learning
- Title(参考訳): カプセル学習のためのハイブリッドGromov-Wasserstein埋め込み
- Authors: Pourya Shamsolmoali, Masoumeh Zareapoor, Swagatam Das, Eric Granger,
Salvador Garcia
- Abstract要約: Capsule Network (CapsNets) は、オブジェクト、部品、およびそれらの関係を2段階のプロセスで解析することを目的としている。
階層的関係モデリングは計算コストが高く、潜在的な利点にもかかわらずCapsNetの利用が制限されている。
本稿では,標準ベースラインモデルを超え,高性能な畳み込みモデルよりも優れた性能を示すカプセルの学習手法を提案する。
- 参考スコア(独自算出の注目度): 24.520120182880333
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Capsule networks (CapsNets) aim to parse images into a hierarchy of objects,
parts, and their relations using a two-step process involving part-whole
transformation and hierarchical component routing. However, this hierarchical
relationship modeling is computationally expensive, which has limited the wider
use of CapsNet despite its potential advantages. The current state of CapsNet
models primarily focuses on comparing their performance with capsule baselines,
falling short of achieving the same level of proficiency as deep CNN variants
in intricate tasks. To address this limitation, we present an efficient
approach for learning capsules that surpasses canonical baseline models and
even demonstrates superior performance compared to high-performing convolution
models. Our contribution can be outlined in two aspects: firstly, we introduce
a group of subcapsules onto which an input vector is projected. Subsequently,
we present the Hybrid Gromov-Wasserstein framework, which initially quantifies
the dissimilarity between the input and the components modeled by the
subcapsules, followed by determining their alignment degree through optimal
transport. This innovative mechanism capitalizes on new insights into defining
alignment between the input and subcapsules, based on the similarity of their
respective component distributions. This approach enhances CapsNets' capacity
to learn from intricate, high-dimensional data while retaining their
interpretability and hierarchical structure. Our proposed model offers two
distinct advantages: (i) its lightweight nature facilitates the application of
capsules to more intricate vision tasks, including object detection; (ii) it
outperforms baseline approaches in these demanding tasks.
- Abstract(参考訳): Capsule Networks(CapsNets)は、イメージをオブジェクト、部品、およびそれらの関係の階層にパースすることを目的として、部分全体変換と階層的コンポーネントルーティングを含む2段階のプロセスを使用する。
しかし、この階層的関係モデリングは計算コストが高く、潜在的な利点にもかかわらずcapsnetの利用が制限されている。
capsnetモデルの現在の状況は、主に彼らのパフォーマンスとカプセルのベースラインを比較することに集中しており、複雑なタスクでディープcnnの変種と同じレベルの熟練度を達成できていない。
この制限に対処するために、標準ベースラインモデルを超え、高性能な畳み込みモデルよりも優れた性能を示すカプセルの学習手法を提案する。
まず、入力ベクトルが投影される部分カプセルのグループを紹介します。
次に、まず、サブカプセルによってモデル化されたコンポーネントと入力の相違性を定量化し、次に最適な輸送によってアライメント度を決定するハイブリッドGromov-Wassersteinフレームワークを提案する。
この革新的なメカニズムは、それぞれのコンポーネント分布の類似性に基づいて、入力とサブカプセルのアライメントを定義する新しい洞察を生かしている。
このアプローチはCapsNetsの複雑な高次元データから学ぶ能力を高め、解釈可能性と階層構造を維持する。
提案モデルには2つの利点がある。
(i)その軽量な性質は、物体検出を含むより複雑な視覚タスクへのカプセルの応用を促進する。
(ii)これらの要求タスクにおけるベースラインアプローチよりも優れています。
関連論文リスト
- Hierarchical Object-Centric Learning with Capsule Networks [0.0]
畳み込みニューラルネットワークの制限に対処するために、カプセルネットワーク(CapsNets)が導入された。
この論文はCapsNetsの興味深い側面を調査し、その潜在能力を解き放つための3つの重要な疑問に焦点を当てている。
論文 参考訳(メタデータ) (2024-05-30T09:10:33Z) - ProtoCaps: A Fast and Non-Iterative Capsule Network Routing Method [6.028175460199198]
本稿では,カプセルネットワークのための新しい非定型ルーティング機構を提案する。
私たちは共有のCapsuleサブスペースを利用し、各下位のCapsuleを各上位のCapsuleに投影する必要性を否定します。
本研究は,カプセルネットワークの運用効率と性能を向上させるための提案手法の可能性を明らかにするものである。
論文 参考訳(メタデータ) (2023-07-19T12:39:40Z) - Routing with Self-Attention for Multimodal Capsule Networks [108.85007719132618]
我々は,カプセルの強度をマルチモーダル学習フレームワークの文脈で活用できる,新しいマルチモーダルカプセルネットワークを提案する。
カプセルを大規模入力データに適応させるために, カプセルを選択する自己保持機構による新たなルーティングを提案する。
これにより、ノイズの多いビデオデータによる堅牢なトレーニングだけでなく、従来のルーティング方法と比較してカプセルネットワークのサイズを拡大することが可能になる。
論文 参考訳(メタデータ) (2021-12-01T19:01:26Z) - Optimising for Interpretability: Convolutional Dynamic Alignment
Networks [108.83345790813445]
我々は、畳み込み動的アライメントネットワーク(CoDA Nets)と呼ばれる新しいニューラルネットワークモデルを紹介する。
彼らの中核となるビルディングブロックは動的アライメントユニット(DAU)であり、タスク関連パターンに合わせて動的に計算された重みベクトルで入力を変換するように最適化されている。
CoDAネットは一連の入力依存線形変換を通じて分類予測をモデル化し、出力を個々の入力コントリビューションに線形分解することができる。
論文 参考訳(メタデータ) (2021-09-27T12:39:46Z) - ASPCNet: A Deep Adaptive Spatial Pattern Capsule Network for
Hyperspectral Image Classification [47.541691093680406]
本稿では,適応型空間パターンカプセルネットワーク(ASPCNet)アーキテクチャを提案する。
拡大された受容体に基づいて畳み込み核のサンプリング位置を回転させることができる。
3つの公開データセットの実験は、ASPCNetが最先端の方法よりも高い精度で競争力を発揮することを示しています。
論文 参考訳(メタデータ) (2021-04-25T07:10:55Z) - Deformable Capsules for Object Detection [5.819237403145079]
変形可能なカプセル(DeformCaps)、新しいカプセル構造(SplitCaps)、および計算効率と多数のオブジェクトやクラスのモデリングの必要性のバランスをとるための新しい動的ルーティングアルゴリズム(SE-Routing)を紹介します。
提案アーキテクチャは1段階検出フレームワークであり,最先端の1段階CNN手法と同等のMS COCOについて結果を得る。
論文 参考訳(メタデータ) (2021-04-11T15:36:30Z) - CoADNet: Collaborative Aggregation-and-Distribution Networks for
Co-Salient Object Detection [91.91911418421086]
Co-Salient Object Detection (CoSOD)は、2つ以上の関連する画像を含む所定のクエリグループに繰り返し現れる健全なオブジェクトを発見することを目的としている。
課題の1つは、画像間の関係をモデリングし、活用することによって、コ・サリヤ・キューを効果的にキャプチャする方法である。
我々は,複数画像から有能かつ反復的な視覚パターンを捉えるために,エンドツーエンドの協調集約配信ネットワーク(CoADNet)を提案する。
論文 参考訳(メタデータ) (2020-11-10T04:28:11Z) - Dual-constrained Deep Semi-Supervised Coupled Factorization Network with
Enriched Prior [80.5637175255349]
本稿では、DS2CF-Netと呼ばれる、拡張された事前制約付きDual-Constrained Deep Semi-Supervised Coupled Factorization Networkを提案する。
隠れた深い特徴を抽出するために、DS2CF-Netは、深い構造と幾何学的な構造に制約のあるニューラルネットワークとしてモデル化される。
我々のネットワークは、表現学習とクラスタリングのための最先端の性能を得ることができる。
論文 参考訳(メタデータ) (2020-09-08T13:10:21Z) - An Efficient Agreement Mechanism in CapsNets By Pairwise Product [13.247509552137487]
ファクトリゼーションマシン(FM)の特徴的相互作用に触発されたカプセル構築のためのペアワイズ合意機構を提案する。
本稿では,低レベルの視覚的特徴を表現するための残差ネットワークの長所と,部分と全体との関係をモデル化するCapsNetアーキテクチャを提案する。
論文 参考訳(メタデータ) (2020-04-01T08:09:23Z) - Subspace Capsule Network [85.69796543499021]
SubSpace Capsule Network (SCN) はカプセルネットワークのアイデアを利用して、エンティティの外観や暗黙的に定義された特性のバリエーションをモデル化する。
SCNは、テスト期間中にCNNと比較して計算オーバーヘッドを発生させることなく、識別モデルと生成モデルの両方に適用することができる。
論文 参考訳(メタデータ) (2020-02-07T17:51:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。