論文の概要: Towards Optimization and Model Selection for Domain Generalization: A
Mixup-guided Solution
- arxiv url: http://arxiv.org/abs/2209.00652v2
- Date: Thu, 4 Jan 2024 01:41:08 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-05 18:10:23.745653
- Title: Towards Optimization and Model Selection for Domain Generalization: A
Mixup-guided Solution
- Title(参考訳): ドメイン一般化のための最適化とモデル選択:混合誘導解
- Authors: Wang Lu, Jindong Wang, Yidong Wang, Xing Xie
- Abstract要約: そこで本研究では,ドメイン一般化のためのMixupガイドによる最適化と選択手法を提案する。
最適化のために、好みの方向を導出するアウト・オブ・ディストリビューション・データセットを利用する。
モデル選択のために、ターゲット分布に近づいた検証データセットを生成する。
- 参考スコア(独自算出の注目度): 43.292274574847234
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The distribution shifts between training and test data typically undermine
the performance of models. In recent years, lots of work pays attention to
domain generalization (DG) where distribution shifts exist, and target data are
unseen. Despite the progress in algorithm design, two foundational factors have
long been ignored: 1) the optimization for regularization-based objectives, and
2) the model selection for DG since no knowledge about the target domain can be
utilized. In this paper, we propose Mixup guided optimization and selection
techniques for DG. For optimization, we utilize an adapted Mixup to generate an
out-of-distribution dataset that can guide the preference direction and
optimize with Pareto optimization. For model selection, we generate a
validation dataset with a closer distance to the target distribution, and
thereby it can better represent the target data. We also present some
theoretical insights behind our proposals. Comprehensive experiments
demonstrate that our model optimization and selection techniques can largely
improve the performance of existing domain generalization algorithms and even
achieve new state-of-the-art results.
- Abstract(参考訳): トレーニングとテストデータ間の分散シフトは、一般的にモデルのパフォーマンスを損なう。
近年,分散シフトが存在する領域一般化(DG)に多くの作業が注がれており,対象データも見当たらない。
アルゴリズム設計の進歩にもかかわらず、2つの基本的な要素は長い間無視されてきた。
1)正則化に基づく目標の最適化、及び
2) DG のモデル選択は対象領域に関する知識を利用できないためである。
本稿では,DGのためのMixup Guided Optimization and selection Techniqueを提案する。
最適化のために、適応したミックスアップを使用して、好みの方向を導き、pareto最適化で最適化できる分散データセットを生成する。
モデル選択のために、ターゲット分布との距離が近い検証データセットを生成し、ターゲットデータをよりよく表現できる。
提案の背後にある理論的洞察も提示する。
包括的実験により、我々のモデル最適化と選択手法は既存のドメイン一般化アルゴリズムの性能を大幅に向上させ、新しい最先端の結果を得ることができることを示した。
関連論文リスト
- Diffusion Models as Network Optimizers: Explorations and Analysis [71.69869025878856]
生成拡散モデル(GDM)は,ネットワーク最適化の新しいアプローチとして期待されている。
本研究ではまず,生成モデルの本質的な特徴について考察する。
本稿では,識別的ネットワーク最適化よりも生成モデルの利点を簡潔かつ直感的に示す。
論文 参考訳(メタデータ) (2024-11-01T09:05:47Z) - Gradient Guidance for Diffusion Models: An Optimization Perspective [45.6080199096424]
本稿では,ユーザ特定目的の最適化に向けて,事前学習した拡散モデルを適用するための勾配ガイダンスの形式について検討する。
我々は,その最適化理論とアルゴリズム設計を体系的に研究するために,誘導拡散の数学的枠組みを確立する。
論文 参考訳(メタデータ) (2024-04-23T04:51:02Z) - Functional Graphical Models: Structure Enables Offline Data-Driven Optimization [111.28605744661638]
構造がサンプル効率のよいデータ駆動最適化を実現する方法を示す。
また、FGM構造自体を推定するデータ駆動最適化アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-01-08T22:33:14Z) - Bayesian Inverse Transfer in Evolutionary Multiobjective Optimization [29.580786235313987]
InvTrEMO(InvTrEMO)の第1回リバーストランスファー・マルチオブジェクト(InvTrEMO)を紹介する。
InvTrEMOは、決定空間がタスク間で正確に整合していない場合でも、多くの一般的な領域で共通の目的関数を利用する。
InvTrEMOは、高い精度の逆モデルを重要な副産物とし、オンデマンドで調整されたソリューションの生成を可能にする。
論文 参考訳(メタデータ) (2023-12-22T14:12:18Z) - Consistency Regularization for Generalizable Source-free Domain
Adaptation [62.654883736925456]
ソースフリードメイン適応(source-free domain adapt, SFDA)は、ソースデータセットにアクセスすることなく、十分にトレーニングされたソースモデルを未学習のターゲットドメインに適応することを目的としている。
既存のSFDAメソッドは、ターゲットのトレーニングセット上で適用されたモデルを評価し、目に見えないが同一の分散テストセットからデータを無視する。
より一般化可能なSFDA法を開発するための整合正則化フレームワークを提案する。
論文 参考訳(メタデータ) (2023-08-03T07:45:53Z) - Flatness-Aware Minimization for Domain Generalization [17.430563368226853]
ドメイン一般化(DG)は、未知の分布シフトの下でよく一般化されるロバストモデルを学ぶことを目指している。
現在、ほとんどのDGメソッドは広く使用されているベンチマークであるDomainBedに従っており、すべてのデータセットのデフォルトとしてAdamを使用している。
領域一般化のための平坦度認識最小化(Flatness-Aware Minimization for Domain Generalization, FAD)を提案する。
論文 参考訳(メタデータ) (2023-07-20T05:48:20Z) - Optimizer's Information Criterion: Dissecting and Correcting Bias in Data-Driven Optimization [16.57676001669012]
データ駆動最適化では、得られた決定のサンプル性能は通常、真の性能に対して楽観的なバイアスを生じさせる。
クロスバリデーションのような、このバイアスを修正するための一般的なテクニックは、追加の最適化問題を繰り返し解決する必要があるため、コストがかかる。
我々は一階偏差を直接近似する一般バイアス補正手法を開発し、追加の最適化問題を解く必要はない。
論文 参考訳(メタデータ) (2023-06-16T07:07:58Z) - Variational Model Perturbation for Source-Free Domain Adaptation [64.98560348412518]
確率的枠組みにおける変分ベイズ推定によるモデルパラメータの摂動を導入する。
本研究では,ベイズニューラルネットワークの学習と理論的関連性を実証し,目的領域に対する摂動モデルの一般化可能性を示す。
論文 参考訳(メタデータ) (2022-10-19T08:41:19Z) - Bayesian Optimization with Informative Covariance [13.113313427848828]
探索空間の特定の領域の好みを符号化するために,非定常性を利用した新しい情報共分散関数を提案する。
提案した関数は,より弱い事前情報の下でも,ハイ次元でのベイズ最適化のサンプル効率を向上させることができることを示す。
論文 参考訳(メタデータ) (2022-08-04T15:05:11Z) - Domain Adaptive Person Re-Identification via Coupling Optimization [58.567492812339566]
ドメイン適応型人物再識別(ReID)は、ドメインのギャップとターゲットシナリオに対するアノテーションの不足のために困難である。
本稿では,ドメイン不変写像 (DIM) 法とグローバル局所距離最適化 (GLO) を含む結合最適化手法を提案する。
GLOはターゲットドメインの教師なし設定でReIDモデルをトレーニングするために設計されている。
論文 参考訳(メタデータ) (2020-11-06T14:01:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。