論文の概要: Optimizing the Performative Risk under Weak Convexity Assumptions
- arxiv url: http://arxiv.org/abs/2209.00771v1
- Date: Fri, 2 Sep 2022 01:07:09 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-05 12:10:00.701914
- Title: Optimizing the Performative Risk under Weak Convexity Assumptions
- Title(参考訳): 弱凸量推定によるパフォーマンスリスクの最適化
- Authors: Yulai Zhao
- Abstract要約: 性能予測において、予測モデルは将来のデータを生成する分布に影響を与える。
これまでの研究では、損失に関する一般的な条件とモデルパラメータから分布へのマッピングが特定されており、凸性はパフォーマンスリスクを意味する。
本稿では,反復最適化法における性能最小化リスク問題の回避性を犠牲にすることなく,これらの仮定を緩和する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In performative prediction, a predictive model impacts the distribution that
generates future data, a phenomenon that is being ignored in classical
supervised learning. In this closed-loop setting, the natural measure of
performance, denoted the performative risk, captures the expected loss incurred
by a predictive model after deployment. The core difficulty of minimizing the
performative risk is that the data distribution itself depends on the model
parameters. This dependence is governed by the environment and not under the
control of the learner. As a consequence, even the choice of a convex loss
function can result in a highly non-convex performative risk minimization
problem. Prior work has identified a pair of general conditions on the loss and
the mapping from model parameters to distributions that implies convexity of
the performative risk. In this paper, we relax these assumptions and focus on
obtaining weaker notions of convexity, without sacrificing the amenability of
the performative risk minimization problem for iterative optimization methods.
- Abstract(参考訳): 予測モデルは、古典的な教師付き学習において無視される現象である将来のデータを生成する分布に影響を与える。
このクローズドループ設定では、パフォーマンスの自然な尺度(パフォーマンスリスク)は、デプロイ後の予測モデルによって生じる期待損失をキャプチャする。
パフォーマンスリスクを最小化することの難しさは、データ分散自体がモデルパラメータに依存することだ。
この依存は環境によって制御され、学習者の管理下ではない。
その結果、凸損失関数の選択でさえも、非常に非凸効率なリスク最小化問題を引き起こす可能性がある。
これまでの研究では、損失に関する一般的な条件と、モデルパラメータから分布へのマッピングは、パフォーマンスリスクの凸性を意味する。
本稿では,これらの仮定を緩和し,反復最適化法における性能的リスク最小化問題の回避性を犠牲にすることなく,凸性の弱い概念の獲得に注力する。
関連論文リスト
- Error Bounds of Supervised Classification from Information-Theoretic Perspective [0.0]
我々は、情報理論の観点から、教師付き分類にディープニューラルネットワークを使用する場合の予測リスクのバウンダリについて検討する。
経験的リスクをさらに分解したモデルリスクとフィッティングエラーを導入する。
論文 参考訳(メタデータ) (2024-06-07T01:07:35Z) - Rejection via Learning Density Ratios [50.91522897152437]
拒絶による分類は、モデルを予測しないことを許容する学習パラダイムとして現れます。
そこで我々は,事前学習したモデルの性能を最大化する理想的なデータ分布を求める。
私たちのフレームワークは、クリーンでノイズの多いデータセットで実証的にテストされます。
論文 参考訳(メタデータ) (2024-05-29T01:32:17Z) - Model-Based Epistemic Variance of Values for Risk-Aware Policy Optimization [59.758009422067]
モデルベース強化学習における累積報酬に対する不確実性を定量化する問題を考察する。
我々は、解が値の真後分散に収束する新しい不確実性ベルマン方程式(UBE)を提案する。
本稿では,リスク・サーキングとリスク・アバース・ポリシー最適化のいずれにも適用可能な汎用ポリシー最適化アルゴリズムQ-Uncertainty Soft Actor-Critic (QU-SAC)を導入する。
論文 参考訳(メタデータ) (2023-12-07T15:55:58Z) - On the Variance, Admissibility, and Stability of Empirical Risk
Minimization [80.26309576810844]
2乗損失を持つ経験的リスク最小化(ERM)は、極小最適誤差率に達する可能性がある。
軽微な仮定では、ERMの準最適性はばらつきよりも大きなバイアスによるものでなければならない。
また、我々の推定は、非ドンスカー類に対するCaponnetto と Rakhlin (2006) の主な結果を補完する ERM の安定性を示唆している。
論文 参考訳(メタデータ) (2023-05-29T15:25:48Z) - Performative Prediction with Bandit Feedback: Learning through Reparameterization [23.039885534575966]
行動予測は、データの分布自体がモデルの展開に応じて変化する社会予測を研究するためのフレームワークである。
本研究では,実行予測目標をデータ分散関数として再パラメータ化する再パラメータ化を開発する。
論文 参考訳(メタデータ) (2023-05-01T21:31:29Z) - Performative Prediction with Neural Networks [24.880495520422]
パフォーマンス予測は、予測するデータに影響を与えるモデルを学習するためのフレームワークである。
繰り返しリスク最小化法を用いて、性能的に安定な分類器を見つけるための標準収束結果は、データの分布がモデルのパラメータに連続であることを仮定する。
この研究では、データ分布はモデルの予測に関してリプシッツ連続であると仮定する。
論文 参考訳(メタデータ) (2023-04-14T01:12:48Z) - Improving Generalization via Uncertainty Driven Perturbations [107.45752065285821]
トレーニングデータポイントの不確実性による摂動について考察する。
損失駆動摂動とは異なり、不確実性誘導摂動は決定境界を越えてはならない。
線形モデルにおいて,UDPがロバスト性マージン決定を達成することが保証されていることを示す。
論文 参考訳(メタデータ) (2022-02-11T16:22:08Z) - Approximate Regions of Attraction in Learning with Decision-Dependent
Distributions [11.304363655760513]
我々は、繰り返しリスク最小化を、実行リスク最小化の勾配流の軌跡として分析する。
この設定において、様々な平衡に対するアトラクションの領域を特徴付ける条件を提供する。
本稿では、繰り返しリスク最小化の収束に関する幾何学的条件を提供する性能的アライメントの概念を、性能的リスク最小化に導入する。
論文 参考訳(メタデータ) (2021-06-30T18:38:08Z) - Risk Minimization from Adaptively Collected Data: Guarantees for
Supervised and Policy Learning [57.88785630755165]
経験的リスク最小化(Empirical Risk Minimization, ERM)は、機械学習のワークホースであるが、適応的に収集されたデータを使用すると、そのモデルに依存しない保証が失敗する可能性がある。
本研究では,仮説クラス上での損失関数の平均値を最小限に抑えるため,適応的に収集したデータを用いた一般的な重み付きERMアルゴリズムについて検討する。
政策学習では、探索がゼロになるたびに既存の文献のオープンギャップを埋める率-最適後悔保証を提供する。
論文 参考訳(メタデータ) (2021-06-03T09:50:13Z) - Outside the Echo Chamber: Optimizing the Performative Risk [21.62040119228266]
本研究では,損失関数の性質の自然集合と,その実行リスクが凸となるモデル誘起分布シフトを同定する。
導関数のない凸最適化の一般的な方法よりも優れたサンプル効率で性能リスクを最適化するために,構造的仮定を活用するアルゴリズムを開発した。
論文 参考訳(メタデータ) (2021-02-17T04:36:39Z) - The Risks of Invariant Risk Minimization [52.7137956951533]
不変リスク最小化(Invariant Risk Minimization)は、データの深い不変性を学ぶという考え方に基づく目標である。
我々は、IRMの目的に基づく分類の最初の分析と、最近提案されたこれらの代替案について、かなり自然で一般的なモデルで分析する。
IRMは、テストデータがトレーニング分布と十分に類似していない限り、破滅的に失敗する可能性がある。
論文 参考訳(メタデータ) (2020-10-12T14:54:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。