論文の概要: Diffusion Models: A Comprehensive Survey of Methods and Applications
- arxiv url: http://arxiv.org/abs/2209.00796v1
- Date: Fri, 2 Sep 2022 02:59:10 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-05 12:38:35.784268
- Title: Diffusion Models: A Comprehensive Survey of Methods and Applications
- Title(参考訳): 拡散モデル:方法と応用に関する総合的な調査
- Authors: Ling Yang, Zhilong Zhang, Shenda Hong
- Abstract要約: 拡散モデル(英: Diffusion model)は、密度理論の確立を伴う様々なタスクにおいて印象的な結果を示す深層生成モデルのクラスである。
近年,拡散モデルの性能向上への熱意が高まっている。
- 参考スコア(独自算出の注目度): 5.96105931794036
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Diffusion models are a class of deep generative models that have shown
impressive results on various tasks with dense theoretical founding. Although
diffusion models have achieved impressive quality and diversity of sample
synthesis than other state-of-the-art models, they still suffer from costly
sampling procedure and sub-optimal likelihood estimation. Recent studies have
shown great enthusiasm on improving the performance of diffusion model. In this
article, we present a first comprehensive review of existing variants of the
diffusion models. Specifically, we provide a first taxonomy of diffusion models
and categorize them variants to three types, namely sampling-acceleration
enhancement, likelihood-maximization enhancement and data-generalization
enhancement. We also introduce in detail other five generative models (i.e.,
variational autoencoders, generative adversarial networks, normalizing flow,
autoregressive models, and energy-based models), and clarify the connections
between diffusion models and these generative models. Then we make a thorough
investigation into the applications of diffusion models, including computer
vision, natural language processing, waveform signal processing, multi-modal
modeling, molecular graph generation, time series modeling, and adversarial
purification. Furthermore, we propose new perspectives pertaining to the
development of this generative model.
- Abstract(参考訳): 拡散モデルは、密集した理論的基礎を持つ様々なタスクで印象的な結果を示す、深い生成モデルのクラスである。
拡散モデルは、他の最先端モデルよりも優れた品質と多彩なサンプル合成を達成したが、それでもコストのかかるサンプリング手順と最適度推定に苦しむ。
近年の研究では拡散モデルの性能向上に大きな関心が寄せられている。
本稿では, 拡散モデルの既存変種について, 初めて包括的レビューを行う。
具体的には,拡散モデルの最初の分類法を提供し,サンプリング・アクセラレーション・エンハンスメント,可能性最大化・データ一般化エンハンスメントという3つのタイプに分類する。
また、他の5つの生成モデル(変分オートエンコーダ、生成逆ネットワーク、正規化フロー、自己回帰モデル、エネルギーベースモデル)を詳細に紹介し、拡散モデルとそれらの生成モデルとの関係を明らかにする。
次に,コンピュータビジョン,自然言語処理,波形信号処理,マルチモーダルモデリング,分子グラフ生成,時系列モデリング,対向的浄化などの拡散モデルの適用について,徹底的に検討する。
さらに,この生成モデルの開発に関する新たな視点を提案する。
関連論文リスト
- Energy-Based Diffusion Language Models for Text Generation [126.23425882687195]
エネルギーベース拡散言語モデル(Energy-based Diffusion Language Model, EDLM)は、拡散ステップごとに全シーケンスレベルで動作するエネルギーベースモデルである。
我々のフレームワークは、既存の拡散モデルよりも1.3$times$のサンプリングスピードアップを提供する。
論文 参考訳(メタデータ) (2024-10-28T17:25:56Z) - Provable Statistical Rates for Consistency Diffusion Models [87.28777947976573]
最先端の性能にもかかわらず、拡散モデルは、多くのステップが伴うため、遅いサンプル生成で知られている。
本稿では, 整合性モデルに関する最初の統計理論に寄与し, 分散不整合最小化問題としてトレーニングを定式化している。
論文 参考訳(メタデータ) (2024-06-23T20:34:18Z) - Diffusion Models in Low-Level Vision: A Survey [82.77962165415153]
拡散モデルに基づくソリューションは、優れた品質と多様性のサンプルを作成する能力で広く称賛されている。
本稿では,3つの一般化拡散モデリングフレームワークを提案し,それらと他の深層生成モデルとの相関関係について検討する。
医療、リモートセンシング、ビデオシナリオなど、他のタスクに適用された拡張拡散モデルについて要約する。
論文 参考訳(メタデータ) (2024-06-17T01:49:27Z) - An Overview of Diffusion Models: Applications, Guided Generation, Statistical Rates and Optimization [59.63880337156392]
拡散モデルはコンピュータビジョン、オーディオ、強化学習、計算生物学において大きな成功を収めた。
経験的成功にもかかわらず、拡散モデルの理論は非常に限定的である。
本稿では,前向きな理論や拡散モデルの手法を刺激する理論的露光について述べる。
論文 参考訳(メタデータ) (2024-04-11T14:07:25Z) - A Survey of Diffusion Models in Natural Language Processing [11.233768932957771]
拡散モデルは、ネットワークや多様体にまたがる情報や信号の拡散を捉える。
本稿は,NLPで使用される拡散モデルの異なる定式化,その強度と限界,それらの応用について論じる。
論文 参考訳(メタデータ) (2023-05-24T03:25:32Z) - Diffusion Models in Vision: A Survey [80.82832715884597]
拡散モデルは、前方拡散段階と逆拡散段階の2つの段階に基づく深層生成モデルである。
拡散モデルは、既知の計算負荷にもかかわらず、生成したサンプルの品質と多様性に対して広く評価されている。
論文 参考訳(メタデータ) (2022-09-10T22:00:30Z) - A Survey on Generative Diffusion Model [75.93774014861978]
拡散モデルは、深層生成モデルの新たなクラスである。
時間を要する反復生成過程や高次元ユークリッド空間への閉じ込めなど、いくつかの制限がある。
本調査では,拡散モデルの向上を目的とした高度な手法を多数提示する。
論文 参考訳(メタデータ) (2022-09-06T16:56:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。