論文の概要: Can an NN model plainly learn planar layouts?
- arxiv url: http://arxiv.org/abs/2209.01075v2
- Date: Mon, 5 Sep 2022 08:33:33 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-07 10:42:13.371016
- Title: Can an NN model plainly learn planar layouts?
- Title(参考訳): nnモデルでは平面レイアウトを学べるのか?
- Authors: Smon van Wageningen and Tamara Mchedlidze
- Abstract要約: 様々な平面グラフクラスを学習するニューラルネットワークの機能について検討する。
このモデルは,特定のグラフクラスにおいて従来の手法より優れていることが判明した。
しかし、このモデルはデータのランダム性に影響を受けやすいようで、予想よりもロバスト性は低いようだ。
- 参考スコア(独自算出の注目度): 0.261072980439312
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Planar graph drawings tend to be aesthetically pleasing. In this poster we
explore a Neural Network's capability of learning various planar graph classes.
Additionally, we also investigate the effectiveness of the model in
generalizing beyond planarity. We find that the model can outperform
conventional techniques for certain graph classes. The model, however, appears
to be more susceptible to randomness in the data, and seems to be less robust
than expected.
- Abstract(参考訳): 平面グラフの描画は審美的に喜ばしい傾向にある。
このポスターでは、様々な平面グラフクラスを学習するニューラルネットワークの能力について検討する。
さらに, 平面性を超えた一般化におけるモデルの有効性についても検討した。
このモデルは、あるグラフクラスに対する従来のテクニックよりも優れています。
しかし、このモデルはデータのランダム性に影響を受けやすいようで、予想よりもロバスト性は低いようだ。
関連論文リスト
- Planning with Diffusion for Flexible Behavior Synthesis [125.24438991142573]
我々は、できるだけ多くの軌道最適化パイプラインをモデリング問題に折り畳むことがどう見えるか検討する。
我々の技術的アプローチの核心は、軌道を反復的にデノベーションすることで計画する拡散確率モデルにある。
論文 参考訳(メタデータ) (2022-05-20T07:02:03Z) - Graph Self-supervised Learning with Accurate Discrepancy Learning [64.69095775258164]
離散性に基づく自己監督型LeArning(D-SLA)と呼ばれる原図と摂動グラフの正確な相違を学習することを目的としたフレームワークを提案する。
本稿では,分子特性予測,タンパク質機能予測,リンク予測タスクなど,グラフ関連下流タスクにおける本手法の有効性を検証する。
論文 参考訳(メタデータ) (2022-02-07T08:04:59Z) - Visual Learning-based Planning for Continuous High-Dimensional POMDPs [81.16442127503517]
Visual Tree Search (VTS)は、オフラインで学習した生成モデルとオンラインモデルベースのPOMDP計画を組み合わせた学習と計画の手順である。
VTSは、モンテカルロの木探索プランナーにおける画像観測の可能性を予測し評価するために、一連の深部生成観測モデルを利用することで、オフラインモデルトレーニングとオンラインプランニングを橋渡しする。
VTSは、異なる観測ノイズに対して堅牢であり、オンラインのモデルベースプランニングを利用するため、再トレーニングを必要とせずに、異なる報酬構造に適応できることを示す。
論文 参考訳(メタデータ) (2021-12-17T11:53:31Z) - Deep Neural Network for DrawiNg Networks, (DNN)^2 [1.5749416770494706]
本稿ではDNN(Deep Neural Network for DrawiNg Networks)と呼ばれる新しいグラフ描画フレームワークを提案する。
グラフ描画におけるDeep Learningアプローチが新規であり,今後の作業における多くの手がかりが特定されているため,(DNN)2が良好に機能していることが示される。
論文 参考訳(メタデータ) (2021-08-08T13:23:26Z) - The World as a Graph: Improving El Ni\~no Forecasts with Graph Neural
Networks [0.00916150060695978]
季節予測へのグラフニューラルネットワークの最初の応用を提案する。
当社のモデルであるGraphinoは、最先端のディープラーニングベースのモデルで最大6ヶ月の予測を上回ります。
論文 参考訳(メタデータ) (2021-04-11T19:55:55Z) - What Do Deep Nets Learn? Class-wise Patterns Revealed in the Input Space [88.37185513453758]
本研究では,深層ニューラルネットワーク(DNN)が学習するクラスワイズな知識を,異なる環境下で可視化し,理解する手法を提案する。
本手法は,各クラスのモデルが学習した知識を表現するために,画素空間内の1つの予測パターンを探索する。
逆境環境では、逆境に訓練されたモデルはより単純化された形状パターンを学ぶ傾向がある。
論文 参考訳(メタデータ) (2021-01-18T06:38:41Z) - Graph Neural Networks for Improved El Ni\~no Forecasting [0.009620910657090186]
我々は,エルニーニョ南部振動(ENSO)を長時間予測するためのグラフニューラルネットワーク(GNN)の応用を提案する。
予備的な結果は1ヶ月と3ヶ月前に予測される最先端システムよりも有望で優れています。
論文 参考訳(メタデータ) (2020-12-02T23:40:53Z) - Interpreting Graph Neural Networks for NLP With Differentiable Edge
Masking [63.49779304362376]
グラフニューラルネットワーク(GNN)は、構造的帰納バイアスをNLPモデルに統合する一般的なアプローチとなっている。
本稿では,不要なエッジを識別するGNNの予測を解釈するポストホック手法を提案する。
モデルの性能を劣化させることなく,多数のエッジを落とせることを示す。
論文 参考訳(メタデータ) (2020-10-01T17:51:19Z) - Non-Parametric Graph Learning for Bayesian Graph Neural Networks [35.88239188555398]
グラフ隣接行列の後方分布を構築するための新しい非パラメトリックグラフモデルを提案する。
このモデルの利点を,ノード分類,リンク予測,レコメンデーションという3つの異なる問題設定で示す。
論文 参考訳(メタデータ) (2020-06-23T21:10:55Z) - Customized Graph Neural Networks [38.30640892828196]
グラフニューラルネットワーク(GNN)は,グラフ分類のタスクを大幅に進歩させた。
本稿では,新たにカスタマイズされたグラフニューラルネットワークフレームワークであるCustomized-GNNを提案する。
提案するフレームワークは非常に一般的なもので,既存のグラフニューラルネットワークモデルにも適用可能である。
論文 参考訳(メタデータ) (2020-05-22T05:22:24Z) - Graph Ordering: Towards the Optimal by Learning [69.72656588714155]
グラフ表現学習は、ノード分類、予測、コミュニティ検出など、多くのグラフベースのアプリケーションで顕著な成功を収めている。
しかし,グラフ圧縮やエッジ分割などのグラフアプリケーションでは,グラフ表現学習タスクに還元することは極めて困難である。
本稿では,このようなアプリケーションの背後にあるグラフ順序付け問題に対して,新しい学習手法を用いて対処することを提案する。
論文 参考訳(メタデータ) (2020-01-18T09:14:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。