論文の概要: Cross-Camera Deep Colorization
- arxiv url: http://arxiv.org/abs/2209.01211v2
- Date: Wed, 7 Sep 2022 04:00:27 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-11 13:14:20.503089
- Title: Cross-Camera Deep Colorization
- Title(参考訳): クロスカメラ・ディープカラー化
- Authors: Yaping Zhao, Haitian Zheng, Mengqi Ji, Ruqi Huang
- Abstract要約: 本稿では,カラープラスモノデュアルカメラシステムからの画像の整列と融合を行う,エンドツーエンドの畳み込みニューラルネットワークを提案する。
提案手法は,約10dBPSNRゲインの大幅な改善を継続的に達成する。
- 参考スコア(独自算出の注目度): 10.254243409261898
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we consider the color-plus-mono dual-camera system and propose
an end-to-end convolutional neural network to align and fuse images from it in
an efficient and cost-effective way. Our method takes cross-domain and
cross-scale images as input, and consequently synthesizes HR colorization
results to facilitate the trade-off between spatial-temporal resolution and
color depth in the single-camera imaging system. In contrast to the previous
colorization methods, ours can adapt to color and monochrome cameras with
distinctive spatial-temporal resolutions, rendering the flexibility and
robustness in practical applications. The key ingredient of our method is a
cross-camera alignment module that generates multi-scale correspondences for
cross-domain image alignment. Through extensive experiments on various datasets
and multiple settings, we validate the flexibility and effectiveness of our
approach. Remarkably, our method consistently achieves substantial
improvements, i.e., around 10dB PSNR gain, upon the state-of-the-art methods.
Code is at: https://github.com/IndigoPurple/CCDC
- Abstract(参考訳): 本稿では,カラープラスモノデュアルカメラシステムについて考察し,画像の整列と融合を効率よく,低コストで実現するエンドツーエンド畳み込みニューラルネットワークを提案する。
本手法は,クロスドメイン画像とクロススケール画像とを入力として,空間時間分解能と色深度とのトレードオフを容易にするためにHRカラー化結果を合成する。
従来のカラー化手法とは対照的に,カラーカメラやモノクロームカメラでは空間分解能が特有であり,実用上の柔軟性と頑健性が期待できる。
本手法の主な要素は、クロスドメイン画像アライメントのためのマルチスケール対応を生成するクロスカメラアライメントモジュールである。
さまざまなデータセットと複数の設定に関する広範な実験を通じて、我々のアプローチの柔軟性と有効性を検証する。
注目に値することに,本手法は,最先端の手法による10dBPSNRゲインの大幅な向上を実現している。
code is at: https://github.com/IndigoPurple/CCDC
関連論文リスト
- Transforming Color: A Novel Image Colorization Method [8.041659727964305]
本稿では,色変換器とGANを用いた画像カラー化手法を提案する。
提案手法は,グローバルな情報を取得するためのトランスフォーマーアーキテクチャと,視覚的品質を改善するためのGANフレームワークを統合する。
実験の結果,提案するネットワークは,他の最先端のカラー化技術よりも優れていた。
論文 参考訳(メタデータ) (2024-10-07T07:23:42Z) - Diff-Mosaic: Augmenting Realistic Representations in Infrared Small Target Detection via Diffusion Prior [63.64088590653005]
本稿では拡散モデルに基づくデータ拡張手法であるDiff-Mosaicを提案する。
我々は,モザイク画像を高度に調整し,リアルな画像を生成するPixel-Priorという拡張ネットワークを導入する。
第2段階では,Diff-Prior という画像強調戦略を提案する。
論文 参考訳(メタデータ) (2024-06-02T06:23:05Z) - Learning Invariant Inter-pixel Correlations for Superpixel Generation [12.605604620139497]
学習可能な特徴は、制約付き判別能力を示し、不満足なピクセルグループ化性能をもたらす。
本稿では,不変画素間相関と統計特性を選択的に分離するContentangle Superpixelアルゴリズムを提案する。
4つのベンチマークデータセットの実験結果は、既存の最先端手法に対するアプローチの優位性を示している。
論文 参考訳(メタデータ) (2024-02-28T09:46:56Z) - SPDGAN: A Generative Adversarial Network based on SPD Manifold Learning
for Automatic Image Colorization [1.220743263007369]
生成逆ネットワーク(SPDGAN)を用いたSymmetric Positive Definite (SPD) Manifold Learningに基づく完全自動カラー化手法を提案する。
本モデルは,2つの識別器とジェネレータの対角ゲームを確立する。その目標は,残差接続により層間の色情報を失うことなく,偽のカラー化画像を生成することである。
論文 参考訳(メタデータ) (2023-12-21T00:52:01Z) - CCDWT-GAN: Generative Adversarial Networks Based on Color Channel Using
Discrete Wavelet Transform for Document Image Binarization [3.0175628677371935]
本稿では,カラーチャネルに基づく生成逆ネットワークを用いた新規性手法を提案する。
提案手法は, 画像前処理, 画像強調, 画像バイナライゼーションの3段階からなる。
実験の結果、CCDWT-GANは複数のベンチマークデータセットで上位2つの性能を達成した。
論文 参考訳(メタデータ) (2023-05-27T08:55:56Z) - Dense Pixel-to-Pixel Harmonization via Continuous Image Representation [22.984119094424056]
Inlicit Neural Networks (HINet) を用いた新しい画像調和手法を提案する。
Retinex理論に触発されて、調和を2つの部分に分離し、合成画像の内容と環境をそれぞれキャプチャする。
本手法の有効性を,最先端の手法と比較した実験により検証した。
論文 参考訳(メタデータ) (2023-03-03T02:52:28Z) - $PC^2$: Projection-Conditioned Point Cloud Diffusion for Single-Image 3D
Reconstruction [97.06927852165464]
単一のRGB画像から物体の3次元形状を再構築することは、コンピュータビジョンにおける長年の課題である。
条件付き偏光拡散プロセスによりスパース点雲を生成する単一像3次元再構成法を提案する。
論文 参考訳(メタデータ) (2023-02-21T13:37:07Z) - Name Your Colour For the Task: Artificially Discover Colour Naming via
Colour Quantisation Transformer [62.75343115345667]
そこで本研究では,色空間を定量化しつつ,画像上での認識を維持しつつ,色空間を定量化する新しい色量子化変換器CQFormerを提案する。
人工色システムと人間の言語における基本色用語との一貫性のある進化パターンを観察する。
我々のカラー量子化法は、画像記憶を効果的に圧縮する効率的な量子化法も提供する。
論文 参考訳(メタデータ) (2022-12-07T03:39:18Z) - Spatial-Separated Curve Rendering Network for Efficient and
High-Resolution Image Harmonization [59.19214040221055]
本稿では,空間分離型曲線描画ネットワーク(S$2$CRNet)を提案する。
提案手法は従来の手法と比較して90%以上のパラメータを減少させる。
提案手法は,既存の手法よりも10ドル以上高速な高解像度画像をリアルタイムにスムーズに処理することができる。
論文 参考訳(メタデータ) (2021-09-13T07:20:16Z) - Probabilistic Color Constancy [88.85103410035929]
我々は、異なる画像領域の寄与を重み付けすることで、シーンの照度を推定するためのフレームワークを定義する。
提案手法は,INTEL-TAUデータセット上での最先端技術と比較して,競合性能を実現する。
論文 参考訳(メタデータ) (2020-05-06T11:03:05Z) - Single-Image HDR Reconstruction by Learning to Reverse the Camera
Pipeline [100.5353614588565]
本稿では,LDR画像形成パイプラインの領域知識をモデルに組み込むことを提案する。
我々は,HDRto-LDR画像形成パイプラインを(1)ダイナミックレンジクリッピング,(2)カメラ応答関数からの非線形マッピング,(3)量子化としてモデル化する。
提案手法は,最先端の単一画像HDR再構成アルゴリズムに対して良好に動作することを示す。
論文 参考訳(メタデータ) (2020-04-02T17:59:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。