論文の概要: Elaboration-Generating Commonsense Question Answering at Scale
- arxiv url: http://arxiv.org/abs/2209.01232v2
- Date: Fri, 14 Jul 2023 21:43:36 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-19 00:28:16.433401
- Title: Elaboration-Generating Commonsense Question Answering at Scale
- Title(参考訳): 規模でのコモンセンス質問応答の試作
- Authors: Wenya Wang, Vivek Srikumar, Hanna Hajishirzi, Noah A. Smith
- Abstract要約: 一般的な感覚を必要とする質問応答では、言語モデル(例えばGPT-3)が背景知識を表すテキストを生成するために使われてきた。
より小さな言語モデルを微調整して有用な中間コンテキストを生成します。
私たちのフレームワークは、2つの言語モデルの更新 – 開発中のジェネレータと応答予測器 – を交互に行います。
- 参考スコア(独自算出の注目度): 77.96137534751445
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In question answering requiring common sense, language models (e.g., GPT-3)
have been used to generate text expressing background knowledge that helps
improve performance. Yet the cost of working with such models is very high; in
this work, we finetune smaller language models to generate useful intermediate
context, referred to here as elaborations. Our framework alternates between
updating two language models -- an elaboration generator and an answer
predictor -- allowing each to influence the other. Using less than 0.5% of the
parameters of GPT-3, our model outperforms alternatives with similar sizes and
closes the gap on GPT-3 on four commonsense question answering benchmarks.
Human evaluations show that the quality of the generated elaborations is high.
- Abstract(参考訳): 一般的な感覚を必要とする問題に対して、言語モデル(例えばGPT-3)は、パフォーマンス向上に役立つバックグラウンド知識を表わすテキストを生成するために使われてきた。
しかし、そのようなモデルで作業するコストは非常に高く、この作業では、より小さな言語モデルを微調整して有用な中間的コンテキストを生成します。
フレームワークは2つの言語モデルの更新 – 開発中のジェネレータと応答予測器 – を交互に行うことで,それぞれが相互に影響を与えます。
GPT-3のパラメータの0.5%未満を用いて、我々のモデルは同様のサイズで代替品よりも優れており、4つの常識的質問応答ベンチマークでGPT-3のギャップを埋めている。
人的評価は, 生成したエレーボレーションの質が高いことを示している。
関連論文リスト
- Fennec: Fine-grained Language Model Evaluation and Correction Extended through Branching and Bridging [25.078498180620425]
我々は, bntextbfChing および bridging を用いて, textbfFine の粒度のtextbfEvaluatiotextbfN textbfExtended を実現するためのステップバイステップ評価フレームワーク textbfFennec を提案する。
評価モデルにより誘導される微粒化補正機能を用いて、複数のモデル応答を洗練し、MT-Bench上の1-2点の改善をもたらす。
論文 参考訳(メタデータ) (2024-05-20T16:47:22Z) - Negated Complementary Commonsense using Large Language Models [3.42658286826597]
この研究は、コモンセンスのシナリオで否定された補完的な質問に対する答えを見つけることに重点を置いている。
本稿では,否定的な相補的シナリオにおける性能向上のためのモデルに依存しない手法を提案する。
論文 参考訳(メタデータ) (2023-07-13T15:03:48Z) - PanGu-{\Sigma}: Towards Trillion Parameter Language Model with Sparse
Heterogeneous Computing [64.53242758625922]
PanGu-SigmaはAscend 910 AIプロセッサとMindSporeフレームワークのクラスタでトレーニングされている。
さまざまな中国のNLPダウンストリームタスクのゼロショット学習において、最先端のパフォーマンスを提供する。
論文 参考訳(メタデータ) (2023-03-20T03:39:27Z) - STREET: A Multi-Task Structured Reasoning and Explanation Benchmark [56.555662318619135]
マルチタスクとマルチドメインの自然言語推論と説明ベンチマークを統一的に導入する。
我々は、モデルが質問に答えるだけでなく、ある解の正しさを証明できる中間的な結論を生成するために、問題の前提がどのように使われているかを記述する、段階的に構造化された説明を生成することを期待している。
論文 参考訳(メタデータ) (2023-02-13T22:34:02Z) - Emergent Analogical Reasoning in Large Language Models [1.5469452301122177]
GPT-3は、多くの設定において、抽象的なパターン誘導、マッチング、さらには人間の能力を超える、驚くほど強力な能力を持っていることを示す。
以上の結果から, GPT-3のような大規模言語モデルでは, 幅広い類似問題に対するゼロショット解を求める能力が得られている。
論文 参考訳(メタデータ) (2022-12-19T00:04:56Z) - GLaM: Efficient Scaling of Language Models with Mixture-of-Experts [84.33607245023049]
我々はGLaM(Generalist Language Model)という言語モデル群を提案し,開発する。
GLaMは、厳密な変種に比べてトレーニングコストを大幅に削減しつつ、モデルのキャパシティを拡大するために、わずかに活性化されたミックス・オブ・エキスパートアーキテクチャを使用する。
GPT-3の訓練に使用するエネルギーの1/3しか消費せず、推論にはフロップの半分しか必要とせず、29のNLPタスクにまたがる全体的なゼロショットとワンショットのパフォーマンスは向上している。
論文 参考訳(メタデータ) (2021-12-13T18:58:19Z) - It's Not Just Size That Matters: Small Language Models Are Also Few-Shot
Learners [14.264737570114631]
GPT-3に類似した性能は、よりグリーンな言語モデルで得られることを示す。
我々は、小さな言語モデルで自然言語理解を成功させるために必要な重要な要素を同定する。
論文 参考訳(メタデータ) (2020-09-15T14:18:53Z) - Language Models are Few-Shot Learners [61.36677350504291]
言語モデルのスケールアップにより、タスクに依存しない、少数ショットのパフォーマンスが大幅に向上することを示す。
我々は、1750億のパラメータを持つ自動回帰言語モデルであるGPT-3を訓練し、その性能を数ショットでテストする。
GPT-3は、翻訳、質問応答、クローズタスクを含む多くのNLPデータセットで高いパフォーマンスを達成する。
論文 参考訳(メタデータ) (2020-05-28T17:29:03Z) - TuringAdvice: A Generative and Dynamic Evaluation of Language Use [90.3029315711237]
言語理解モデルのための新しい課題タスクとデータセットであるTuringAdviceを提案する。
現実の人が現在直面している記述された状況を考えると、モデルは自然言語で有益なアドバイスを生成する必要がある。
実証的な結果は、今日のモデルがTuringAdviceで苦労していることを示している。
論文 参考訳(メタデータ) (2020-04-07T18:00:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。