Representative Image Feature Extraction via Contrastive Learning
Pretraining for Chest X-ray Report Generation
- URL: http://arxiv.org/abs/2209.01604v1
- Date: Sun, 4 Sep 2022 12:07:19 GMT
- Title: Representative Image Feature Extraction via Contrastive Learning
Pretraining for Chest X-ray Report Generation
- Authors: Yu-Jen Chen, Wei-Hsiang Shen, Hao-Wei Chung, Jing-Hao Chiu, Da-Cheng
Juan, Tsung-Ying Ho, Chi-Tung Cheng, Meng-Lin Li, Tsung-Yi Ho
- Abstract summary: The goal of medical report generation is to accurately capture and describe the image findings.
Previous works pretrain their visual encoding neural networks with large datasets in different domains.
We propose a framework that uses a contrastive learning approach to pretrain the visual encoder and requires no additional meta information.
- Score: 19.69560434388278
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Medical report generation is a challenging task since it is time-consuming
and requires expertise from experienced radiologists. The goal of medical
report generation is to accurately capture and describe the image findings.
Previous works pretrain their visual encoding neural networks with large
datasets in different domains, which cannot learn general visual representation
in the specific medical domain. In this work, we propose a medical report
generation framework that uses a contrastive learning approach to pretrain the
visual encoder and requires no additional meta information. In addition, we
adopt lung segmentation as an augmentation method in the contrastive learning
framework. This segmentation guides the network to focus on encoding the visual
feature within the lung region. Experimental results show that the proposed
framework improves the performance and the quality of the generated medical
reports both quantitatively and qualitatively.
Related papers
- Deep Generative Models Unveil Patterns in Medical Images Through Vision-Language Conditioning [3.4299097748670255]
Deep generative models have significantly advanced medical imaging analysis by enhancing dataset size and quality.
We employ a generative structure with hybrid conditions, combining clinical data and segmentation masks to guide the image synthesis process.
Our approach differs from and presents a more challenging task than traditional medical report-guided synthesis due to the less visual correlation of our clinical information with the images.
arXiv Detail & Related papers (2024-10-17T17:48:36Z) - Learning Generalized Medical Image Representations through Image-Graph Contrastive Pretraining [11.520404630575749]
We develop an Image-Graph Contrastive Learning framework that pairs chest X-rays with structured report knowledge graphs automatically extracted from radiology notes.
Our approach uniquely encodes the disconnected graph components via a relational graph convolution network and transformer attention.
arXiv Detail & Related papers (2024-05-15T12:27:38Z) - Self-supervised vision-langage alignment of deep learning representations for bone X-rays analysis [53.809054774037214]
This paper proposes leveraging vision-language pretraining on bone X-rays paired with French reports.
It is the first study to integrate French reports to shape the embedding space devoted to bone X-Rays representations.
arXiv Detail & Related papers (2024-05-14T19:53:20Z) - MLIP: Enhancing Medical Visual Representation with Divergence Encoder
and Knowledge-guided Contrastive Learning [48.97640824497327]
We propose a novel framework leveraging domain-specific medical knowledge as guiding signals to integrate language information into the visual domain through image-text contrastive learning.
Our model includes global contrastive learning with our designed divergence encoder, local token-knowledge-patch alignment contrastive learning, and knowledge-guided category-level contrastive learning with expert knowledge.
Notably, MLIP surpasses state-of-the-art methods even with limited annotated data, highlighting the potential of multimodal pre-training in advancing medical representation learning.
arXiv Detail & Related papers (2024-02-03T05:48:50Z) - Explanations of Classifiers Enhance Medical Image Segmentation via
End-to-end Pre-training [37.11542605885003]
Medical image segmentation aims to identify and locate abnormal structures in medical images, such as chest radiographs, using deep neural networks.
Our work collects explanations from well-trained classifiers to generate pseudo labels of segmentation tasks.
We then use Integrated Gradients (IG) method to distill and boost the explanations obtained from the classifiers, generating massive diagnosis-oriented localization labels (DoLL)
These DoLL-annotated images are used for pre-training the model before fine-tuning it for downstream segmentation tasks, including COVID-19 infectious areas, lungs, heart, and clavicles.
arXiv Detail & Related papers (2024-01-16T16:18:42Z) - Radiology Report Generation Using Transformers Conditioned with
Non-imaging Data [55.17268696112258]
This paper proposes a novel multi-modal transformer network that integrates chest x-ray (CXR) images and associated patient demographic information.
The proposed network uses a convolutional neural network to extract visual features from CXRs and a transformer-based encoder-decoder network that combines the visual features with semantic text embeddings of patient demographic information.
arXiv Detail & Related papers (2023-11-18T14:52:26Z) - Dynamic Graph Enhanced Contrastive Learning for Chest X-ray Report
Generation [92.73584302508907]
We propose a knowledge graph with Dynamic structure and nodes to facilitate medical report generation with Contrastive Learning.
In detail, the fundamental structure of our graph is pre-constructed from general knowledge.
Each image feature is integrated with its very own updated graph before being fed into the decoder module for report generation.
arXiv Detail & Related papers (2023-03-18T03:53:43Z) - RadTex: Learning Efficient Radiograph Representations from Text Reports [7.090896766922791]
We build a data-efficient learning framework that utilizes radiology reports to improve medical image classification performance with limited labeled data.
Our model achieves higher classification performance than ImageNet-supervised pretraining when labeled training data is limited.
arXiv Detail & Related papers (2022-08-05T15:06:26Z) - Cascaded Robust Learning at Imperfect Labels for Chest X-ray
Segmentation [61.09321488002978]
We present a novel cascaded robust learning framework for chest X-ray segmentation with imperfect annotation.
Our model consists of three independent network, which can effectively learn useful information from the peer networks.
Our methods could achieve a significant improvement on the accuracy in segmentation tasks compared to the previous methods.
arXiv Detail & Related papers (2021-04-05T15:50:16Z) - Auxiliary Signal-Guided Knowledge Encoder-Decoder for Medical Report
Generation [107.3538598876467]
We propose an Auxiliary Signal-Guided Knowledge-Decoder (ASGK) to mimic radiologists' working patterns.
ASGK integrates internal visual feature fusion and external medical linguistic information to guide medical knowledge transfer and learning.
arXiv Detail & Related papers (2020-06-06T01:00:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.