MLIP: Enhancing Medical Visual Representation with Divergence Encoder
and Knowledge-guided Contrastive Learning
- URL: http://arxiv.org/abs/2402.02045v1
- Date: Sat, 3 Feb 2024 05:48:50 GMT
- Title: MLIP: Enhancing Medical Visual Representation with Divergence Encoder
and Knowledge-guided Contrastive Learning
- Authors: Zhe Li, Laurence T. Yang, Bocheng Ren, Xin Nie, Zhangyang Gao, Cheng
Tan, Stan Z. Li
- Abstract summary: We propose a novel framework leveraging domain-specific medical knowledge as guiding signals to integrate language information into the visual domain through image-text contrastive learning.
Our model includes global contrastive learning with our designed divergence encoder, local token-knowledge-patch alignment contrastive learning, and knowledge-guided category-level contrastive learning with expert knowledge.
Notably, MLIP surpasses state-of-the-art methods even with limited annotated data, highlighting the potential of multimodal pre-training in advancing medical representation learning.
- Score: 48.97640824497327
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The scarcity of annotated data has sparked significant interest in
unsupervised pre-training methods that leverage medical reports as auxiliary
signals for medical visual representation learning. However, existing research
overlooks the multi-granularity nature of medical visual representation and
lacks suitable contrastive learning techniques to improve the models'
generalizability across different granularities, leading to the
underutilization of image-text information. To address this, we propose MLIP, a
novel framework leveraging domain-specific medical knowledge as guiding signals
to integrate language information into the visual domain through image-text
contrastive learning. Our model includes global contrastive learning with our
designed divergence encoder, local token-knowledge-patch alignment contrastive
learning, and knowledge-guided category-level contrastive learning with expert
knowledge. Experimental evaluations reveal the efficacy of our model in
enhancing transfer performance for tasks such as image classification, object
detection, and semantic segmentation. Notably, MLIP surpasses state-of-the-art
methods even with limited annotated data, highlighting the potential of
multimodal pre-training in advancing medical representation learning.
Related papers
- Visual Neural Decoding via Improved Visual-EEG Semantic Consistency [3.4061238650474657]
Methods that directly map EEG features to the CLIP embedding space may introduce mapping bias and cause semantic inconsistency.
We propose a Visual-EEG Semantic Decouple Framework that explicitly extracts the semantic-related features of these two modalities to facilitate optimal alignment.
Our method achieves state-of-the-art results in zero-shot neural decoding tasks.
arXiv Detail & Related papers (2024-08-13T10:16:10Z) - OPTiML: Dense Semantic Invariance Using Optimal Transport for Self-Supervised Medical Image Representation [6.4136876268620115]
Self-supervised learning (SSL) has emerged as a promising technique for medical image analysis due to its ability to learn without annotations.
We introduce a novel SSL framework OPTiML, employing optimal transport (OT), to capture the dense semantic invariance and fine-grained details.
Our empirical results reveal OPTiML's superiority over state-of-the-art methods across all evaluated tasks.
arXiv Detail & Related papers (2024-04-18T02:59:48Z) - MedFLIP: Medical Vision-and-Language Self-supervised Fast Pre-Training with Masked Autoencoder [26.830574964308962]
We introduce MedFLIP, a Fast Language-Image Pre-training method for Medical analysis.
We explore MAEs for zero-shot learning with crossed domains, which enhances the model's ability to learn from limited data.
Lastly, we validate using language will improve the zero-shot performance for the medical image analysis.
arXiv Detail & Related papers (2024-03-07T16:11:43Z) - Knowledge Boosting: Rethinking Medical Contrastive Vision-Language
Pre-Training [6.582001681307021]
We propose the Knowledge-Boosting Contrastive Vision-Language Pre-training framework (KoBo)
KoBo integrates clinical knowledge into the learning of vision-language semantic consistency.
Experiments validate the effect of our framework on eight tasks including classification, segmentation, retrieval, and semantic relatedness.
arXiv Detail & Related papers (2023-07-14T09:38:22Z) - Medical Image Understanding with Pretrained Vision Language Models: A
Comprehensive Study [8.547751745702156]
We show that well-designed medical prompts are the key to elicit knowledge from pre-trained vision language models (VLM)
We develop three approaches for automatic generation of medical prompts, which can inject expert-level medical knowledge and image-specific information into the prompts for fine-grained grounding.
arXiv Detail & Related papers (2022-09-30T15:06:13Z) - Align, Reason and Learn: Enhancing Medical Vision-and-Language
Pre-training with Knowledge [68.90835997085557]
We propose a systematic and effective approach to enhance structured medical knowledge from three perspectives.
First, we align the representations of the vision encoder and the language encoder through knowledge.
Second, we inject knowledge into the multi-modal fusion model to enable the model to perform reasoning using knowledge as the supplementation of the input image and text.
Third, we guide the model to put emphasis on the most critical information in images and texts by designing knowledge-induced pretext tasks.
arXiv Detail & Related papers (2022-09-15T08:00:01Z) - Semantic segmentation of multispectral photoacoustic images using deep
learning [53.65837038435433]
Photoacoustic imaging has the potential to revolutionise healthcare.
Clinical translation of the technology requires conversion of the high-dimensional acquired data into clinically relevant and interpretable information.
We present a deep learning-based approach to semantic segmentation of multispectral photoacoustic images.
arXiv Detail & Related papers (2021-05-20T09:33:55Z) - Deep Co-Attention Network for Multi-View Subspace Learning [73.3450258002607]
We propose a deep co-attention network for multi-view subspace learning.
It aims to extract both the common information and the complementary information in an adversarial setting.
In particular, it uses a novel cross reconstruction loss and leverages the label information to guide the construction of the latent representation.
arXiv Detail & Related papers (2021-02-15T18:46:44Z) - Few-shot Medical Image Segmentation using a Global Correlation Network
with Discriminative Embedding [60.89561661441736]
We propose a novel method for few-shot medical image segmentation.
We construct our few-shot image segmentor using a deep convolutional network trained episodically.
We enhance discriminability of deep embedding to encourage clustering of the feature domains of the same class.
arXiv Detail & Related papers (2020-12-10T04:01:07Z) - Learning Binary Semantic Embedding for Histology Image Classification
and Retrieval [56.34863511025423]
We propose a novel method for Learning Binary Semantic Embedding (LBSE)
Based on the efficient and effective embedding, classification and retrieval are performed to provide interpretable computer-assisted diagnosis for histology images.
Experiments conducted on three benchmark datasets validate the superiority of LBSE under various scenarios.
arXiv Detail & Related papers (2020-10-07T08:36:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.