Deterministic and random features for large-scale quantum kernel machine
- URL: http://arxiv.org/abs/2209.01958v1
- Date: Mon, 5 Sep 2022 13:22:34 GMT
- Title: Deterministic and random features for large-scale quantum kernel machine
- Authors: Kouhei Nakaji, Hiroyuki Tezuka, Naoki Yamamoto
- Abstract summary: We show that the quantum kernel method (QKM) can be made scalable by using our proposed deterministic and random features.
Our numerical experiment, using datasets including $O(1,000) sim O(10,000)$ training data, supports the validity of our method.
- Score: 0.9404723842159504
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum machine learning (QML) is the spearhead of quantum computer
applications. In particular, quantum neural networks (QNN) are actively studied
as the method that works both in near-term quantum computers and fault-tolerant
quantum computers. Recent studies have shown that supervised machine learning
with QNN can be interpreted as the quantum kernel method (QKM), suggesting that
enhancing the practicality of the QKM is the key to building near-term
applications of QML. However, the QKM is also known to have two severe issues.
One is that the QKM with the (inner-product based) quantum kernel defined in
the original large Hilbert space does not generalize; namely, the model fails
to find patterns of unseen data. The other one is that the classical
computational cost of the QKM increases at least quadratically with the number
of data, and therefore, QKM is not scalable with data size. This paper aims to
provide algorithms free from both of these issues. That is, for a class of
quantum kernels with generalization capability, we show that the QKM with those
quantum kernels can be made scalable by using our proposed deterministic and
random features. Our numerical experiment, using datasets including $O(1,000)
\sim O(10,000)$ training data, supports the validity of our method.
Related papers
- QKSAN: A Quantum Kernel Self-Attention Network [53.96779043113156]
A Quantum Kernel Self-Attention Mechanism (QKSAM) is introduced to combine the data representation merit of Quantum Kernel Methods (QKM) with the efficient information extraction capability of SAM.
A Quantum Kernel Self-Attention Network (QKSAN) framework is proposed based on QKSAM, which ingeniously incorporates the Deferred Measurement Principle (DMP) and conditional measurement techniques.
Four QKSAN sub-models are deployed on PennyLane and IBM Qiskit platforms to perform binary classification on MNIST and Fashion MNIST.
arXiv Detail & Related papers (2023-08-25T15:08:19Z) - Quantum computing quantum Monte Carlo with hybrid tensor network for electronic structure calculations [3.642843803494657]
We propose an algorithm combining QC-QMC with a hybrid tensor network to extend the applicability of QC-QMC beyond a single quantum device size.
Our algorithm is evaluated on the Heisenberg chain model, graphite-based Hubbard model, hydrogen plane model, and MonoArylBiImidazole using full configuration interaction QMC.
arXiv Detail & Related papers (2023-03-31T14:38:40Z) - Quantum Machine Learning: from physics to software engineering [58.720142291102135]
We show how classical machine learning approach can help improve the facilities of quantum computers.
We discuss how quantum algorithms and quantum computers may be useful for solving classical machine learning tasks.
arXiv Detail & Related papers (2023-01-04T23:37:45Z) - Universal expressiveness of variational quantum classifiers and quantum
kernels for support vector machines [0.0]
We show that variational quantum classifiers (VQC) and support vector machines with quantum kernels (QSVM) can solve a classification problem based on the k-Forrelation problem.
Our results imply that there exists a feature map and a quantum kernel that make VQC and QSVM efficient solvers for any BQP problem.
arXiv Detail & Related papers (2022-07-12T22:03:31Z) - Open Source Variational Quantum Eigensolver Extension of the Quantum
Learning Machine (QLM) for Quantum Chemistry [0.0]
We introduce a novel open-source QC package, denoted Open-VQE, providing tools for using and developing chemically-inspired adaptive methods.
It is able to use the Atos Quantum Learning Machine (QLM), a general programming framework enabling to write, optimize simulate computing programs.
Along with OpenVQE, we introduce myQLMFermion, a new open-source module (that includes the key QLM ressources that are important for QC developments)
arXiv Detail & Related papers (2022-06-17T14:24:22Z) - Machine learning applications for noisy intermediate-scale quantum
computers [0.0]
We develop and study three quantum machine learning applications suitable for NISQ computers.
These algorithms are variational in nature and use parameterised quantum circuits (PQCs) as the underlying quantum machine learning model.
We propose a variational algorithm in the area of approximate quantum cloning, where the data becomes quantum in nature.
arXiv Detail & Related papers (2022-05-19T09:26:57Z) - Theory of Quantum Generative Learning Models with Maximum Mean
Discrepancy [67.02951777522547]
We study learnability of quantum circuit Born machines (QCBMs) and quantum generative adversarial networks (QGANs)
We first analyze the generalization ability of QCBMs and identify their superiorities when the quantum devices can directly access the target distribution.
Next, we prove how the generalization error bound of QGANs depends on the employed Ansatz, the number of qudits, and input states.
arXiv Detail & Related papers (2022-05-10T08:05:59Z) - Quantum Machine Learning for Software Supply Chain Attacks: How Far Can
We Go? [5.655023007686363]
This paper analyzes speed up performance of QC when applied to machine learning algorithms, known as Quantum Machine Learning (QML)
Due to limitations of real quantum computers, the QML methods were implemented on open-source quantum simulators such as Qiskit and IBM Quantum.
Interestingly, the experimental results differ to the speed up promises of QC by demonstrating higher computational time and lower accuracy in comparison to the classical approaches for SSC attacks.
arXiv Detail & Related papers (2022-04-04T21:16:06Z) - Quantum Federated Learning with Quantum Data [87.49715898878858]
Quantum machine learning (QML) has emerged as a promising field that leans on the developments in quantum computing to explore large complex machine learning problems.
This paper proposes the first fully quantum federated learning framework that can operate over quantum data and, thus, share the learning of quantum circuit parameters in a decentralized manner.
arXiv Detail & Related papers (2021-05-30T12:19:27Z) - Towards understanding the power of quantum kernels in the NISQ era [79.8341515283403]
We show that the advantage of quantum kernels is vanished for large size datasets, few number of measurements, and large system noise.
Our work provides theoretical guidance of exploring advanced quantum kernels to attain quantum advantages on NISQ devices.
arXiv Detail & Related papers (2021-03-31T02:41:36Z) - On the learnability of quantum neural networks [132.1981461292324]
We consider the learnability of the quantum neural network (QNN) built on the variational hybrid quantum-classical scheme.
We show that if a concept can be efficiently learned by QNN, then it can also be effectively learned by QNN even with gate noise.
arXiv Detail & Related papers (2020-07-24T06:34:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.