On the learnability of quantum neural networks
- URL: http://arxiv.org/abs/2007.12369v1
- Date: Fri, 24 Jul 2020 06:34:34 GMT
- Title: On the learnability of quantum neural networks
- Authors: Yuxuan Du and Min-Hsiu Hsieh and Tongliang Liu and Shan You and
Dacheng Tao
- Abstract summary: We consider the learnability of the quantum neural network (QNN) built on the variational hybrid quantum-classical scheme.
We show that if a concept can be efficiently learned by QNN, then it can also be effectively learned by QNN even with gate noise.
- Score: 132.1981461292324
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We consider the learnability of the quantum neural network (QNN) built on the
variational hybrid quantum-classical scheme, which remains largely unknown due
to the non-convex optimization landscape, the measurement error, and the
unavoidable gate errors introduced by noisy intermediate-scale quantum (NISQ)
machines. Our contributions in this paper are multi-fold. First, we derive the
utility bounds of QNN towards empirical risk minimization, and show that large
gate noise, few quantum measurements, and deep circuit depth will lead to the
poor utility bounds. This result also applies to the variational quantum
circuits with gradient-based classical optimization, and can be of independent
interest. We then prove that QNN can be treated as a differentially private
(DP) model. Thirdly, we show that if a concept class can be efficiently learned
by QNN, then it can also be effectively learned by QNN even with gate noise.
This result implies the same learnability of QNN whether it is implemented on
noiseless or noisy quantum machines. We last exhibit that the quantum
statistical query (QSQ) model can be effectively simulated by noisy QNN. Since
the QSQ model can tackle certain tasks with runtime speedup, our result
suggests that the modified QNN implemented on NISQ devices will retain the
quantum advantage. Numerical simulations support the theoretical results.
Related papers
- Splitting and Parallelizing of Quantum Convolutional Neural Networks for
Learning Translationally Symmetric Data [0.0]
We propose a novel architecture called split-parallelizing QCNN (sp-QCNN)
By splitting the quantum circuit based on translational symmetry, the sp-QCNN can substantially parallelize the conventional QCNN without increasing the number of qubits.
We show that the sp-QCNN can achieve comparable classification accuracy to the conventional QCNN while considerably reducing the measurement resources required.
arXiv Detail & Related papers (2023-06-12T18:00:08Z) - Quantum Imitation Learning [74.15588381240795]
We propose quantum imitation learning (QIL) with a hope to utilize quantum advantage to speed up IL.
We develop two QIL algorithms, quantum behavioural cloning (Q-BC) and quantum generative adversarial imitation learning (Q-GAIL)
Experiment results demonstrate that both Q-BC and Q-GAIL can achieve comparable performance compared to classical counterparts.
arXiv Detail & Related papers (2023-04-04T12:47:35Z) - Variational Quantum Neural Networks (VQNNS) in Image Classification [0.0]
This paper investigates how training of quantum neural network (QNNs) can be done using quantum optimization algorithms.
In this paper, a QNN structure is made where a variational parameterized circuit is incorporated as an input layer named as Variational Quantum Neural Network (VQNNs)
VQNNs is experimented with MNIST digit recognition (less complex) and crack image classification datasets which converge the computation in lesser time than QNN with decent training accuracy.
arXiv Detail & Related papers (2023-03-10T11:24:32Z) - Evaluating the performance of sigmoid quantum perceptrons in quantum
neural networks [0.0]
Quantum neural networks (QNN) have been proposed as a promising architecture for quantum machine learning.
One candidate is quantum perceptrons designed to emulate the nonlinear activation functions of classical perceptrons.
We critically investigate both the capabilities and performance of SQP networks by computing their effective dimension and effective capacity.
arXiv Detail & Related papers (2022-08-12T10:08:11Z) - Entanglement entropy production in Quantum Neural Networks [0.0]
Quantum Neural Networks (QNN) are considered a candidate for achieving quantum advantage in the Noisy Intermediate Quantum computer (NISQ) era.
We show a universal behavior for the rate at which entanglement is created in any given QNN architecture.
We introduce new measure to characterize the entanglement production in QNNs: the entangling speed.
arXiv Detail & Related papers (2022-06-06T10:17:17Z) - Toward Trainability of Deep Quantum Neural Networks [87.04438831673063]
Quantum Neural Networks (QNNs) with random structures have poor trainability due to the exponentially vanishing gradient as the circuit depth and the qubit number increase.
We provide the first viable solution to the vanishing gradient problem for deep QNNs with theoretical guarantees.
arXiv Detail & Related papers (2021-12-30T10:27:08Z) - Towards understanding the power of quantum kernels in the NISQ era [79.8341515283403]
We show that the advantage of quantum kernels is vanished for large size datasets, few number of measurements, and large system noise.
Our work provides theoretical guidance of exploring advanced quantum kernels to attain quantum advantages on NISQ devices.
arXiv Detail & Related papers (2021-03-31T02:41:36Z) - Toward Trainability of Quantum Neural Networks [87.04438831673063]
Quantum Neural Networks (QNNs) have been proposed as generalizations of classical neural networks to achieve the quantum speed-up.
Serious bottlenecks exist for training QNNs due to the vanishing with gradient rate exponential to the input qubit number.
We show that QNNs with tree tensor and step controlled structures for the application of binary classification. Simulations show faster convergent rates and better accuracy compared to QNNs with random structures.
arXiv Detail & Related papers (2020-11-12T08:32:04Z) - Quantum circuit architecture search for variational quantum algorithms [88.71725630554758]
We propose a resource and runtime efficient scheme termed quantum architecture search (QAS)
QAS automatically seeks a near-optimal ansatz to balance benefits and side-effects brought by adding more noisy quantum gates.
We implement QAS on both the numerical simulator and real quantum hardware, via the IBM cloud, to accomplish data classification and quantum chemistry tasks.
arXiv Detail & Related papers (2020-10-20T12:06:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.