論文の概要: SR-GNN: Spatial Relation-aware Graph Neural Network for Fine-Grained
Image Categorization
- arxiv url: http://arxiv.org/abs/2209.02109v1
- Date: Mon, 5 Sep 2022 19:43:15 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-07 12:33:16.631705
- Title: SR-GNN: Spatial Relation-aware Graph Neural Network for Fine-Grained
Image Categorization
- Title(参考訳): SR-GNN:微細画像分類のための空間関係対応グラフニューラルネットワーク
- Authors: Asish Bera and Zachary Wharton and Yonghuai Liu and Nik Bessis and
Ardhendu Behera
- Abstract要約: 本稿では,最も関連性の高い画像領域からコンテキスト認識機能を集約することで,微妙な変化を捉える手法を提案する。
我々のアプローチは、近年の自己注意とグラフニューラルネットワーク(GNN)の発展にインスパイアされている。
これは、認識精度のかなりの差で最先端のアプローチよりも優れている。
- 参考スコア(独自算出の注目度): 24.286426387100423
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Over the past few years, a significant progress has been made in deep
convolutional neural networks (CNNs)-based image recognition. This is mainly
due to the strong ability of such networks in mining discriminative object pose
and parts information from texture and shape. This is often inappropriate for
fine-grained visual classification (FGVC) since it exhibits high intra-class
and low inter-class variances due to occlusions, deformation, illuminations,
etc. Thus, an expressive feature representation describing global structural
information is a key to characterize an object/ scene. To this end, we propose
a method that effectively captures subtle changes by aggregating context-aware
features from most relevant image-regions and their importance in
discriminating fine-grained categories avoiding the bounding-box and/or
distinguishable part annotations. Our approach is inspired by the recent
advancement in self-attention and graph neural networks (GNNs) approaches to
include a simple yet effective relation-aware feature transformation and its
refinement using a context-aware attention mechanism to boost the
discriminability of the transformed feature in an end-to-end learning process.
Our model is evaluated on eight benchmark datasets consisting of fine-grained
objects and human-object interactions. It outperforms the state-of-the-art
approaches by a significant margin in recognition accuracy.
- Abstract(参考訳): 過去数年間、深層畳み込みニューラルネットワーク(CNN)に基づく画像認識において、大きな進歩が見られた。
これは主に、識別対象のポーズをマイニングする上でのネットワークの強力な能力と、テクスチャや形状からの情報によるものである。
これは、咬合、変形、照明などによるクラス内およびクラス間のばらつきが高いため、きめ細かい視覚分類(FGVC)には不適当であることが多い。
したがって、グローバルな構造情報を記述する表現的特徴表現は、オブジェクト/シーンを特徴付けるキーとなる。
そこで本研究では,関連する画像領域からコンテキスト認識特徴を集約し,境界ボックスや識別可能な部分アノテーションを回避し,細粒度カテゴリを識別することの重要性を効果的に把握する手法を提案する。
このアプローチは,近年の自己注意とグラフニューラルネットワーク(gnns)の進歩に触発され,シンプルで効果的な関係認識型特徴変換と,その改良にコンテキスト認識型注意機構を用いてエンド・ツー・エンドの学習プロセスにおける特徴の識別性を高める。
このモデルは細粒度オブジェクトと人間とオブジェクトの相互作用からなる8つのベンチマークデータセットで評価される。
これは認識精度のかなりの差で最先端のアプローチを上回っている。
関連論文リスト
- Point Cloud Understanding via Attention-Driven Contrastive Learning [64.65145700121442]
トランスフォーマーベースのモデルは、自己認識機構を活用することにより、先進的なポイントクラウド理解を持つ。
PointACLは、これらの制限に対処するために設計された、注意駆動のコントラスト学習フレームワークである。
本手法では, 注意駆動型動的マスキング手法を用いて, モデルが非集中領域に集中するように誘導する。
論文 参考訳(メタデータ) (2024-11-22T05:41:00Z) - DCNN: Dual Cross-current Neural Networks Realized Using An Interactive Deep Learning Discriminator for Fine-grained Objects [48.65846477275723]
本研究では、微細な画像分類の精度を向上させるために、新しい二重電流ニューラルネットワーク(DCNN)を提案する。
弱い教師付き学習バックボーンモデルを構築するための新しい特徴として、(a)異種データの抽出、(b)特徴マップの解像度の維持、(c)受容領域の拡大、(d)グローバル表現と局所特徴の融合などがある。
論文 参考訳(メタデータ) (2024-05-07T07:51:28Z) - Fine-grained Recognition with Learnable Semantic Data Augmentation [68.48892326854494]
きめ細かい画像認識は、長年続くコンピュータビジョンの課題である。
本稿では,識別領域損失問題を軽減するため,特徴レベルのトレーニングデータを多様化することを提案する。
本手法は,いくつかの人気分類ネットワーク上での一般化性能を著しく向上させる。
論文 参考訳(メタデータ) (2023-09-01T11:15:50Z) - Masked Contrastive Graph Representation Learning for Age Estimation [44.96502862249276]
本稿では,画像冗長性情報を扱う上で,グラフ表現学習の特性を利用する。
年齢推定のためのMasked Contrastive Graph Representation Learning (MCGRL)法を提案する。
実世界の顔画像データセットに対する実験結果から,提案手法が他の最先端の年齢推定手法よりも優れていることが示された。
論文 参考訳(メタデータ) (2023-06-16T15:53:21Z) - A-FMI: Learning Attributions from Deep Networks via Feature Map
Importance [58.708607977437794]
勾配に基づくアトリビューション法は畳み込みニューラルネットワーク(CNN)の理解を助けることができる
帰属特徴の冗長性と勾配飽和問題は、帰属方法がまだ直面する課題である。
本稿では,各特徴マップの寄与度を高めるための新しい概念,特徴マップ重要度 (FMI) と,勾配飽和問題に対処するためのFMIによる新しい帰属法を提案する。
論文 参考訳(メタデータ) (2021-04-12T14:54:44Z) - Learning Granularity-Aware Convolutional Neural Network for Fine-Grained
Visual Classification [0.0]
識別的特徴を段階的に探索するGranularity-Aware Congrainedal Neural Network (GA-CNN)を提案する。
GA-CNNはバウンディングボックス/パーツアノテーションを必要とせず、エンドツーエンドでトレーニングできます。
このアプローチは3つのベンチマークデータセットで最先端のパフォーマンスを達成します。
論文 参考訳(メタデータ) (2021-03-04T02:18:07Z) - Context Decoupling Augmentation for Weakly Supervised Semantic
Segmentation [53.49821324597837]
微調整されたセマンティックセグメンテーションは、近年深く研究されている困難な問題です。
本稿では、オブジェクトが現れる固有のコンテキストを変更する Context Decoupling Augmentation (CDA) メソッドを紹介します。
提案手法の有効性を検証するため, PASCAL VOC 2012データセットにいくつかの代替ネットワークアーキテクチャを用いた広範な実験を行い, CDAが様々なWSSS手法を新たな最先端技術に拡張できることを実証した。
論文 参考訳(メタデータ) (2021-03-02T15:05:09Z) - Context-aware Attentional Pooling (CAP) for Fine-grained Visual
Classification [2.963101656293054]
深層畳み込みニューラルネットワーク(CNN)は、画像認識のための識別対象ポーズと部品情報をマイニングする強力な能力を示しています。
サブピクセル勾配による微妙な変化を効果的にとらえる新しいコンテキスト認識型注意プーリング(CAP)を提案する。
我々は6つの最先端(SotA)バックボーンネットワークと8つのベンチマークデータセットを用いてアプローチを評価した。
論文 参考訳(メタデータ) (2021-01-17T10:15:02Z) - Multi-Level Graph Convolutional Network with Automatic Graph Learning
for Hyperspectral Image Classification [63.56018768401328]
HSI分類のための自動グラフ学習法(MGCN-AGL)を用いたマルチレベルグラフ畳み込みネットワーク(GCN)を提案する。
空間的に隣接する領域における重要度を特徴付けるために注意機構を利用することで、最も関連性の高い情報を適応的に組み込んで意思決定を行うことができる。
MGCN-AGLは局所的に生成した表現表現に基づいて画像領域間の長距離依存性を符号化する。
論文 参考訳(メタデータ) (2020-09-19T09:26:20Z) - Ventral-Dorsal Neural Networks: Object Detection via Selective Attention [51.79577908317031]
我々はVDNet(Ventral-Dorsal Networks)と呼ばれる新しいフレームワークを提案する。
人間の視覚システムの構造にインスパイアされた我々は「Ventral Network」と「Dorsal Network」の統合を提案する。
実験の結果,提案手法は最先端の物体検出手法よりも優れていることがわかった。
論文 参考訳(メタデータ) (2020-05-15T23:57:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。