Class-Incremental Learning via Knowledge Amalgamation
- URL: http://arxiv.org/abs/2209.02112v1
- Date: Mon, 5 Sep 2022 19:49:01 GMT
- Title: Class-Incremental Learning via Knowledge Amalgamation
- Authors: Marcus de Carvalho, Mahardhika Pratama, Jie Zhang, Yajuan San
- Abstract summary: Catastrophic forgetting has been a significant problem hindering the deployment of deep learning algorithms in the continual learning setting.
We put forward an alternative strategy to handle the catastrophic forgetting with knowledge amalgamation (CFA)
CFA learns a student network from multiple heterogeneous teacher models specializing in previous tasks and can be applied to current offline methods.
- Score: 14.513858688486701
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Catastrophic forgetting has been a significant problem hindering the
deployment of deep learning algorithms in the continual learning setting.
Numerous methods have been proposed to address the catastrophic forgetting
problem where an agent loses its generalization power of old tasks while
learning new tasks. We put forward an alternative strategy to handle the
catastrophic forgetting with knowledge amalgamation (CFA), which learns a
student network from multiple heterogeneous teacher models specializing in
previous tasks and can be applied to current offline methods. The knowledge
amalgamation process is carried out in a single-head manner with only a
selected number of memorized samples and no annotations. The teachers and
students do not need to share the same network structure, allowing
heterogeneous tasks to be adapted to a compact or sparse data representation.
We compare our method with competitive baselines from different strategies,
demonstrating our approach's advantages.
Related papers
- Fine-Grained Knowledge Selection and Restoration for Non-Exemplar Class
Incremental Learning [64.14254712331116]
Non-exemplar class incremental learning aims to learn both the new and old tasks without accessing any training data from the past.
We propose a novel framework of fine-grained knowledge selection and restoration.
arXiv Detail & Related papers (2023-12-20T02:34:11Z) - Clustering-based Domain-Incremental Learning [4.835091081509403]
Key challenge in continual learning is the so-called "catastrophic forgetting problem"
We propose an online clustering-based approach on a dynamically updated finite pool of samples or gradients.
We demonstrate the effectiveness of the proposed strategy and its promising performance compared to state-of-the-art methods.
arXiv Detail & Related papers (2023-09-21T13:49:05Z) - Complementary Learning Subnetworks for Parameter-Efficient
Class-Incremental Learning [40.13416912075668]
We propose a rehearsal-free CIL approach that learns continually via the synergy between two Complementary Learning Subnetworks.
Our method achieves competitive results against state-of-the-art methods, especially in accuracy gain, memory cost, training efficiency, and task-order.
arXiv Detail & Related papers (2023-06-21T01:43:25Z) - Online Continual Learning via the Knowledge Invariant and Spread-out
Properties [4.109784267309124]
Key challenge in continual learning is catastrophic forgetting.
We propose a new method, named Online Continual Learning via the Knowledge Invariant and Spread-out Properties (OCLKISP)
We empirically evaluate our proposed method on four popular benchmarks for continual learning: Split CIFAR 100, Split SVHN, Split CUB200 and Split Tiny-Image-Net.
arXiv Detail & Related papers (2023-02-02T04:03:38Z) - Hierarchically Structured Task-Agnostic Continual Learning [0.0]
We take a task-agnostic view of continual learning and develop a hierarchical information-theoretic optimality principle.
We propose a neural network layer, called the Mixture-of-Variational-Experts layer, that alleviates forgetting by creating a set of information processing paths.
Our approach can operate in a task-agnostic way, i.e., it does not require task-specific knowledge, as is the case with many existing continual learning algorithms.
arXiv Detail & Related papers (2022-11-14T19:53:15Z) - A Multi-label Continual Learning Framework to Scale Deep Learning
Approaches for Packaging Equipment Monitoring [57.5099555438223]
We study multi-label classification in the continual scenario for the first time.
We propose an efficient approach that has a logarithmic complexity with regard to the number of tasks.
We validate our approach on a real-world multi-label Forecasting problem from the packaging industry.
arXiv Detail & Related papers (2022-08-08T15:58:39Z) - On Generalizing Beyond Domains in Cross-Domain Continual Learning [91.56748415975683]
Deep neural networks often suffer from catastrophic forgetting of previously learned knowledge after learning a new task.
Our proposed approach learns new tasks under domain shift with accuracy boosts up to 10% on challenging datasets such as DomainNet and OfficeHome.
arXiv Detail & Related papers (2022-03-08T09:57:48Z) - Curriculum Learning: A Survey [65.31516318260759]
Curriculum learning strategies have been successfully employed in all areas of machine learning.
We construct a taxonomy of curriculum learning approaches by hand, considering various classification criteria.
We build a hierarchical tree of curriculum learning methods using an agglomerative clustering algorithm.
arXiv Detail & Related papers (2021-01-25T20:08:32Z) - Learning Invariant Representation for Continual Learning [5.979373021392084]
A key challenge in Continual learning is catastrophically forgetting previously learned tasks when the agent faces a new one.
We propose a new pseudo-rehearsal-based method, named learning Invariant Representation for Continual Learning (IRCL)
Disentangling the shared invariant representation helps to learn continually a sequence of tasks, while being more robust to forgetting and having better knowledge transfer.
arXiv Detail & Related papers (2021-01-15T15:12:51Z) - Incremental Embedding Learning via Zero-Shot Translation [65.94349068508863]
Current state-of-the-art incremental learning methods tackle catastrophic forgetting problem in traditional classification networks.
We propose a novel class-incremental method for embedding network, named as zero-shot translation class-incremental method (ZSTCI)
In addition, ZSTCI can easily be combined with existing regularization-based incremental learning methods to further improve performance of embedding networks.
arXiv Detail & Related papers (2020-12-31T08:21:37Z) - Adversarial Continual Learning [99.56738010842301]
We propose a hybrid continual learning framework that learns a disjoint representation for task-invariant and task-specific features.
Our model combines architecture growth to prevent forgetting of task-specific skills and an experience replay approach to preserve shared skills.
arXiv Detail & Related papers (2020-03-21T02:08:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.