Continual Learning, Fast and Slow
- URL: http://arxiv.org/abs/2209.02370v3
- Date: Sun, 9 Jul 2023 10:02:41 GMT
- Title: Continual Learning, Fast and Slow
- Authors: Quang Pham, Chenghao Liu, Steven C. H. Hoi
- Abstract summary: According to the Complementary Learning Systems theory, humans do effective emphcontinual learning through two complementary systems.
We propose emphDualNets (for Dual Networks), a general continual learning framework comprising a fast learning system for supervised learning of specific tasks and a slow learning system for representation learning of task-agnostic general representation via Self-Supervised Learning (SSL)
We demonstrate the promising results of DualNets on a wide range of continual learning protocols, ranging from the standard offline, task-aware setting to the challenging online, task-free scenario.
- Score: 75.53144246169346
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: According to the Complementary Learning Systems (CLS)
theory~\cite{mcclelland1995there} in neuroscience, humans do effective
\emph{continual learning} through two complementary systems: a fast learning
system centered on the hippocampus for rapid learning of the specifics,
individual experiences; and a slow learning system located in the neocortex for
the gradual acquisition of structured knowledge about the environment.
Motivated by this theory, we propose \emph{DualNets} (for Dual Networks), a
general continual learning framework comprising a fast learning system for
supervised learning of pattern-separated representation from specific tasks and
a slow learning system for representation learning of task-agnostic general
representation via Self-Supervised Learning (SSL). DualNets can seamlessly
incorporate both representation types into a holistic framework to facilitate
better continual learning in deep neural networks. Via extensive experiments,
we demonstrate the promising results of DualNets on a wide range of continual
learning protocols, ranging from the standard offline, task-aware setting to
the challenging online, task-free scenario. Notably, on the
CTrL~\cite{veniat2020efficient} benchmark that has unrelated tasks with vastly
different visual images, DualNets can achieve competitive performance with
existing state-of-the-art dynamic architecture
strategies~\cite{ostapenko2021continual}. Furthermore, we conduct comprehensive
ablation studies to validate DualNets efficacy, robustness, and scalability.
Code will be made available at \url{https://github.com/phquang/DualNet}.
Related papers
- A Unified Framework for Neural Computation and Learning Over Time [56.44910327178975]
Hamiltonian Learning is a novel unified framework for learning with neural networks "over time"
It is based on differential equations that: (i) can be integrated without the need of external software solvers; (ii) generalize the well-established notion of gradient-based learning in feed-forward and recurrent networks; (iii) open to novel perspectives.
arXiv Detail & Related papers (2024-09-18T14:57:13Z) - Interactive Continual Learning: Fast and Slow Thinking [19.253164551254734]
This paper presents a novel Interactive Continual Learning framework, enabled by collaborative interactions among models of various sizes.
To improve memory retrieval in System1, we introduce the CL-vMF mechanism, based on the von Mises-Fisher (vMF) distribution.
Comprehensive evaluation of our proposed ICL demonstrates significant resistance to forgetting and superior performance relative to existing methods.
arXiv Detail & Related papers (2024-03-05T03:37:28Z) - Neuro-mimetic Task-free Unsupervised Online Learning with Continual
Self-Organizing Maps [56.827895559823126]
Self-organizing map (SOM) is a neural model often used in clustering and dimensionality reduction.
We propose a generalization of the SOM, the continual SOM, which is capable of online unsupervised learning under a low memory budget.
Our results, on benchmarks including MNIST, Kuzushiji-MNIST, and Fashion-MNIST, show almost a two times increase in accuracy.
arXiv Detail & Related papers (2024-02-19T19:11:22Z) - Dual Cognitive Architecture: Incorporating Biases and Multi-Memory
Systems for Lifelong Learning [21.163070161951868]
We introduce Dual Cognitive Architecture (DUCA), which includes multiple sub-systems, implicit and explicit knowledge representation, inductive bias, and a multi-memory system.
DUCA shows improvement across different settings and datasets, and it also exhibits reduced task recency bias, without the need for extra information.
To further test the versatility of lifelong learning methods on a challenging distribution shift, we introduce a novel domain-incremental dataset DN4IL.
arXiv Detail & Related papers (2023-10-17T15:24:02Z) - Artificial-Spiking Hierarchical Networks for Vision-Language
Representation Learning [16.902924543372713]
State-of-the-art methods achieve impressive performance by pre-training on large-scale datasets.
We propose an efficient framework for multimodal alignment by introducing a novel visual semantic module.
Experiments show that the proposed ASH-Nets achieve competitive results.
arXiv Detail & Related papers (2023-08-18T10:40:25Z) - Provable Guarantees for Nonlinear Feature Learning in Three-Layer Neural
Networks [49.808194368781095]
We show that three-layer neural networks have provably richer feature learning capabilities than two-layer networks.
This work makes progress towards understanding the provable benefit of three-layer neural networks over two-layer networks in the feature learning regime.
arXiv Detail & Related papers (2023-05-11T17:19:30Z) - Avoiding Catastrophe: Active Dendrites Enable Multi-Task Learning in
Dynamic Environments [0.5277756703318046]
Key challenge for AI is to build embodied systems that operate in dynamically changing environments.
Standard deep learning systems often struggle in dynamic scenarios.
In this article we investigate biologically inspired architectures as solutions.
arXiv Detail & Related papers (2021-12-31T19:52:42Z) - DualNet: Continual Learning, Fast and Slow [14.902239050081032]
We propose a novel continual learning framework named "DualNet"
It comprises a fast learning system for supervised learning of pattern-separated representation from specific tasks and a slow learning system for unsupervised representation learning of task-agnostic general representation via a Self-Supervised Learning (SSL) technique.
Our experiments show that DualNet outperforms state-of-the-art continual learning methods by a large margin.
arXiv Detail & Related papers (2021-10-01T02:31:59Z) - Fully Convolutional Networks for Continuous Sign Language Recognition [83.85895472824221]
Continuous sign language recognition is a challenging task that requires learning on both spatial and temporal dimensions.
We propose a fully convolutional network (FCN) for online SLR to concurrently learn spatial and temporal features from weakly annotated video sequences.
arXiv Detail & Related papers (2020-07-24T08:16:37Z) - Self-supervised Knowledge Distillation for Few-shot Learning [123.10294801296926]
Few shot learning is a promising learning paradigm due to its ability to learn out of order distributions quickly with only a few samples.
We propose a simple approach to improve the representation capacity of deep neural networks for few-shot learning tasks.
Our experiments show that, even in the first stage, self-supervision can outperform current state-of-the-art methods.
arXiv Detail & Related papers (2020-06-17T11:27:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.